数值分析典型习题特别声明:考试时需带计算器作辅助计算1.2015x *=是经四舍五入得到的近似值,则其相对误差*r e ≤-31104⨯. 2. 01(),(),,()n l x l x l x L 是以01,,,n x x x L 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,13-.4. 利用Simpson 公式求⎰212dx x =7.35. 设求积公式10()d (),(1)nk k k f x x A f x n ≈≥∑⎰=是Gauss 型求积公式,则3nk k k A x ==∑1.46. 数值微分公式(2)(2)()i i i f x h f x h f x h+≈--'的截断误差为2().O h7. 设1101A ⎛⎫= ⎪⎝⎭,则A 的谱半径()A ρ=1,A 的条件数1cond ()A =4.8. 用牛顿下山法求解方程303x x -=根的迭代公式是 2133(1),3n n n n x x x x x λ+-=-- 下山条件是1()().n n f x f x +<9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=L x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ<B10. 应用幂法迭代公式(+1)()k k A x =x 当k 充分大时有p q ≈()(1)(),k+2k+k x x x ++0 则A 的按模最大的特征值 1,2λ=11. 设数据12,x x 的绝对误差分别为0.005和0.002,则12x x -的绝对误差约为( D ) A. 0.005 B. 0.002 C. 0.003 D. 0.00712. 对于多项式2012()n n n P x a a x a x a x =++++L 在某点0x 处函数值的秦九韶算法基于如下公式: 算法计算的始点为n a ,而这一算法的优点在于( C )A. 精度高B. 计算量小C. 精度高,且计算量小D. 既收敛又稳定13. 给定数据由它们所确定的Lagrange 多项式与Newton 多项式,以下说法正确的是( C )A.从数值算法上讲,它们是不同的,不过, 一般而言, 后者计算结果精度会更高B.无论从数值算法还是从数学意义上讲,它们都是相同的, 只是后者计算更灵活C.从数值算法讲它们不同,但数学意义上讲它们却是相同的D.无论从数值算法还是从数学意义上讲,它们都是不同的 14. 利用求解方程0)(=x f 根的牛顿迭代法公式为)()(1n n n n x f x f x x '-=+。
利用这一方法进行求解时,迭代所用初始点的选取很关键,以下最好的说法是( B )A.对于单重根是局部二阶收敛的,初始点应选取较接近于根的值,但不一定收敛B.它是局部二阶收敛的,初始点选用较接近于根的值即收敛C.对于单重根是二阶收敛的,初始值0x 任意选取D.对于多重根是超线性收敛的,且初始点0x 任意选取15.求解方程0)(=x f 时,可将方程变形而得到迭代格式)(1n n x x ϕ=+,当迭代格式)(1n n x x ϕ=+中函数)(x ϕ满足( D )条件时,这一迭代格式必收敛。
A.1)(<x ϕ B.1)(<'x ϕ C. 1)(<x ϕ D.()1x φ'<16. 求矩阵特征值与特征向量的幂法与反幂法,分别可以用于求矩阵的( A ) A. 按模最大特征值与最小特征值,及其对应特征向量 B. 所有特征值及其对应特征向量 C. 按模最大特征值及其对应特征向量 D. 按模最小特征值及其对应特征向量17.求解微分方程初值问题数值解的改进的欧拉折线法,其局部截断误差的阶是 ( B ) A. 1 B. 2 C.3 D. 418. 已知n 对观测数据n k y x k k ,...,2,1),,(=, 这n 个点的拟合直线01y a x a =+,10,a a 是使( D )最小的解。
A. ∑=--nk k k x a a y 110 B. ()∑=--nk k k x a a y 110C. )(2110knk k x a a y --∑= D. 2101)(a x a y k nk k --∑=19. 若复化梯形公式计算定积分dx e x ⎰-1,要求截断误差的绝对值不超过4105.0-⨯,则≥n ( A )A. 41B. 42C. 43D. 40 20. 已知函数)(x f y =的数据表251369xy - ,则)(x f y =的拉格朗日插值基函数=)(2x l ( A ) A.)15)(25(5)1)(2(----x x x B.)10)(50)(20()1)(5)(2(------x x x C. )12)(52(2)1)(5(----x x x D.)51)(21(1)5)(2(--⋅--x x x21. 求解初值问题00')(),,(y x y y x f y ==的近似解的梯形公式是=+1n y ( A )A. )],(),([211++++n n n n n y x f y x f h yB. )],(),([211++-+n n n n n y x f y x f hyC. )],(),([211+++-n n n n n y x f y x f h yD. )],(),([21n n n n n y x f y x f hy ++-22. 下面( D )不是数值计算应注意的问题A. 注意简化计算步骤,减少运算次数B. 要避免相近两数相减C. 要防止大数吃掉小数D. 要尽量消灭误差23. 对矩阵特征值满足12n λλλ>≥⋯⋯≥情况,幂法收敛速度由比值12λλ=r 确定,r 越小收敛速度( A )A. 越快B. 越慢C. 不变D. 不确定24. 令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。
解:由1)(000===-e x y y ,111)(-==e x y y 可知,xe x e x x e x x x x x y x x x x y x L )1(1)1(0101011)(111010110101-+=+--=--⨯+--⨯=--+--=---,余项为()1,0),1(2))((!2)()(101∈-=--''=-ξξξx x e x x x x f x R , 故8141121)1(max max 21)(10101=⨯⨯=-⨯⨯≤≤≤-≤≤x x e x R x ξξ25. 已知函数()y f x =的相关数据由牛顿插值公式求三次插值多项式3()P x ()2P =的值近似值。
(注:要求给出差商表) 解:差商表由牛顿插值公式:26.给出计算x =, 并证明2x =。
解:由题意可得出其迭代格式为1k x += 02k x ≤≤且 当02x ≤≤时,()1,x ϕ'=< 所以迭代格式是收敛的.由1lim k k x x *+→∞=可得,x *= 22()2,()20.x x x x ****=+--= 解得:121, 2.x x **=-= 其中110x *=-<舍去。
可得 2.x *= 即解得 2.x =27. 应用紧凑格式的Doolitte 分解(即LU 分解)法求解方程组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛7173530103421101002014321x x x x 。
解:由紧凑格式的Doolitte 分解(略)得:1011210101L ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭及1020101212U ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭,于是求解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛7173510101211014321y y y y 可得⎪⎪⎩⎪⎪⎨⎧====46354321y y y y ,求解⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛463521************x x x x 可得⎪⎪⎩⎪⎪⎨⎧====22114321x x x x 。
28.设方程组⎪⎩⎪⎨⎧=+-=++--=++3103220241225321321321x x x x x x x x x ,(1) 考察用雅可比迭代法,高斯-赛德尔迭代法解此方程组的收敛性; (2) 写出雅可比迭代法及高斯-赛德尔迭代法解此方程组的迭代格式。
解: (1) 由系数矩阵⎪⎪⎪⎭⎫ ⎝⎛--1032241125为严格对角占优矩阵可知,使用雅可比、高斯-赛德尔迭代法求解此方程组均收敛。
[精确解为2,3,4321==-=x x x ] (2) 使用雅可比迭代法:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=++=--+103551201035121041515203201210141510322011201014151)()()(1)(1)1(k k k k x x bD x U L D x ,使用高斯-赛德尔迭代法: 29. 写出求解线性代数方程组的Gauss-Seidel 迭代格式,并分析此格式的敛散性。
解:方程组的Gauss-Seidel 迭代格式为其迭代矩阵为 其特征方程为 解之得 谱半径26()121G B ρ=>,故迭代发散. 29. 已知012113,,,424x x x ===(1)推导以这三点为求积节点在[0,1]上的插值型求积公式10120113()()()()424f x dx A f A f A f ≈++⎰;(2)指明求积公式所具有的代数精度;(3)用所求公式计算120x dx ⎰。
解:(1)所求插值型的求积公式形如:故101113()[2()()2()]3424f x dx f f f ≈-+⎰。
(2)所求的求积公式是插值型,故至少具有2次代数精度,再将34(),f x x x =代入上述公式,可得故代数精度是3次。
(3)由2)可得:12222011131[2()()2()]34243x dx =-+=⎰。
30. 见教材P67例4.1.1。
31. 用Romberg 方法计算⎰31dx x ,写出计算过程并将结果填入下表(*号处不填).32.单原子波函数的形式为bx ae y -=,试按照最小二乘法决定参数a 和b ,已知数据如下:解:对bx ae y -=两边取对数得bx a y -=ln ln ,令y Y ln =,a A ln =,则拟合函数变为bx A Y -=,所给数据转化为取1)(0=x ϕ,x x =)(1ϕ,则()41)(),(4100==∑=i x x ϕϕ,()()7)(),()(),(410110===∑=i ix x x x x ϕϕϕϕ,()21)(),(41211==∑=i i x x x ϕϕ,而()2109.0)(),(410-==∑=i iy x y x ϕ,()6056.3)(),(411-==∑=i i i y x x y x ϕ。