高中物理经典问题---弹簧类问题全面总结解读一:专题训练题1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma当N=0时,物体与平板分离,所以此时k a g m x )(-=因为221at x =,所以kaa g m t )(2-=。
2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。
.分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。
在0_____0.2s 这段时间内P 向上运动的距离:x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m tx a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N.当P 与盘分离时拉力F 最大,F max =m(a+g)=360N.3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。
物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:(1)此过程中所加外力F 的最大值和最小值。
(2)此过程中外力F 所做的功。
解:(1)A 原来静止时:kx 1=mg ①当物体A 开始做匀加速运动时,拉力F 最小,设为F 1,对物体A 有:F 1+kx 1-mg =ma ②当物体B 刚要离开地面时,拉力F 最大,设为F 2,对物体A 有:F 2-kx 2-mg =ma ③对物体B 有:kx 2=mg ④对物体A 有:x 1+x 2=221at ⑤ 由①、④两式解得 a =3.75m/s 2 ,分别由②、③得F 1=45N ,F 2=285N图8图 9 图7(2)在力F 作用的0.4s 内,初末状态的弹性势能相等,由功能关系得:W F =mg (x 1+x 2)+=2)(21at m 49.5J 4.如图5所示,轻弹簧的一端固定在地面上,另一端与木块B 相连,木块A 放在木块B 上,两木块质量均为m ,在木块A 上施有竖直向下的力F ,整个装置处于静止状态.(1)突然将力F 撤去,若运动中A 、B 不分离,则A 、B 共同运动到最高点时,B 对A的弹力有多大?(2)要使A 、B 不分离,力F 应满足什么条件?【点拨解疑】 力F 撤去后,系统作简谐运动,该运动具有明显的对称性,该题利用最高点与最低点的对称性来求解,会简单的多.(1)最高点与最低点有相同大小的回复力,只有方向相反,这里回复力是合外力.在最低点,即原来平衡的系统在撤去力F 的瞬间,受到的合外力应为F /2,方向竖直向上;当到达最高点时,A 受到的合外力也为F /2,但方向向下,考虑到重力的存在,所以B 对A 的弹力为2F mg -. (2)力F 越大越容易分离,讨论临界情况,也利用最高点与最低点回复力的对称性.最高点时,A 、B 间虽接触但无弹力,A 只受重力,故此时恢复力向下,大小位mg .那么,在最低点时,即刚撤去力F 时,A 受的回复力也应等于m g ,但根据前一小题的分析,此时回复力为F /2,这就是说F /2=mg .则F =2mg .因此,使A 、B 不分离的条件是F ≤2mg .5.两块质量分别为m 1和m 2的木块,用一根劲度系数为k 的轻弹簧连在一起,现在m 1上施加压力F ,如图14所示.为了使撤去F 后m 1跳起时能带起m 2,则所加压力F 应多大?g m m F )(21+>(对称法)6.如图1-4-8所示,离心机的光滑水平杆上穿着两个小球A 、B ,质量分别为2m和m ,两球用劲度系数为k 的轻弹簧相连,弹簧的自然长度为l .当两球随着离心机以角速度ω转动时,两球都能够相对于杆静止而又不碰两壁.求A 、B 的旋转半径r A 和r B .223ϖm k klr A -=7.(14分)如图14所示,A 、B 两滑环分别套在间距为1m 的光滑细杆上,A 和B 的质量之比为1∶3,用一自然长度为1m 的轻弹簧将两环相连,在 A 环上作用一沿杆方向的、大小为20N 的拉力F ,当两环都沿杆以相同的加速度a 运动时,弹簧与杆夹角为53°。
(cos53°=0.6)求:(1)弹簧的劲度系数为多少?(2)若突然撤去拉力F ,在撤去拉力F 的瞬间,A 的加速度为a /,a /与a 之间比为多少?解:(1)先取A +B 和弹簧整体为研究对象,弹簧弹力为内力,杆对A 、B 支持力与加速度方向垂直,在沿F 方向应用牛顿第二定律F =(m A +m B )a ①再取B 为研究对象F 弹cos53°=m B a ②①②联立求解得,F 弹=25N由几何关系得,弹簧的伸长量⊿x =l (1/sin53°-1)=0.25m所以弹簧的劲度系数k =100N/m(2)撤去F 力瞬间,弹簧弹力不变,A 的加速度a /= F 弹cos53°/m A所以a /:a =3∶1。
8.(14分)如图所示,质量M =3.5kg 的小车静止于光滑水平面上靠近桌子处,其上表面与水平桌面相平,小车长L =1.2m ,其左端放有一质量为0.5kg 的滑块Q 。
水平放置的轻弹簧左端固定,质量为1kg 的小物块P 置于桌面上的A 点并与弹簧的右端接触。
此时弹簧处于原长,现用水平向左的推力将P 缓慢推至B 点(弹簧仍在弹性限度内)时,推力做的功为W F =6J ,撤去推力后,P 沿桌面滑到小车上并与Q 相碰,最后Q 停在小车的右端,P 停在距小车左端0.5m 处。
已知AB 间距L 1=5cm ,A 点离桌子边沿C 点距离L 2=90cm ,P 与桌面间动摩擦因数4.01=μ,P 、Q 与小车表面间动摩擦因数1.02=μ。
(g =10m/s 2)求:(1)P 到达C 点时的速度 V C 。
(2)P 与Q 碰撞后瞬间Q 的速度大小。
图14解:(1)对P 由A →B →C 应用动能定理,得21211121)2(C F v m L L g m W =+-μ s m V C /2=∴(2)设P 、Q 碰后速度分别为v 1、v 2,小车最后速度为v ,由动量守恒定律得,22111v m v m v m C += v M m m v m C )(211++= 由能量守恒得,()2212222112212212121v m m M v m v m gL m gS m ++-+=+μμ 解得,s m v /22= s m v /322=' 当s m v /322='时,'>=21/35v s m v 不合题意,舍去。
即P 与Q 碰撞后瞬间Q 的速度大小为s m v /22=9.质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时,弹簧的压缩量为x 0,如图1-9-15所示.一物块从钢板正上方距离为3x 0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物块质量也为m 时,它们恰能回到O 点.若物块质量为2m ,仍从A 处自由落下,则物块与钢板回到O点时,还具有向上的速度.求物块向上运动到达的最高点与O 点的距离.解:质量为m 的物块运动过程应分为三个阶段:第一阶段为自由落体运动;第二阶段为和钢板碰撞;第三阶段是和钢板一道向下压缩弹簧运动,再一道回到O 点.质量为2m 的物块运动过程除包含上述三个阶段以外还有第四阶段,即2m 物块在O 点与钢板分离后做竖直上抛运动.弹簧对于m :第二阶段,根据动量守恒有mv0=2mv1 ②对于2m 物块:第二阶段,根据动量守恒有2mv0=3mv2 ④ 第三阶段,根据系统的机械能守恒有又因 E ′p=Ep ⑦上几式联立起来可求出:l=x0/2二:常见弹簧类问题归类高考要求轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,应引起足够重视.弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析(收集整理中,欢迎提供更多信息,不好意思)一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m 1g/k 1B.m 2g/k 2C.m 1g/k 2D.m 2g/k 2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m 1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m 1 + m 2)g /k 2,而m l 刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m 2g /k 2,因而m 2移动△x =(m 1 + m 2)·g/k 2 - m 2g /k 2=m l g /k 2.此题若求m l 移动的距离又当如何求解?参考答案:C2.(1996全国)如图所示,倔强系数为k 1的轻质弹簧两端分别与质量为m 1、m 2的物块1、2拴接,倔强系数为k 2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。