§4 旋转曲面的面积(一) 教学目的:理解微元法的基本思想和方法,掌握旋转曲面的面积计算公式.(二) 教学内容:旋转曲面的面积计算公式.基本要求:掌握求旋转曲面的面积的计算公式,包括求由参数方程定义的旋转曲面的面积;掌握平面曲线的曲率的计算公式.(三) 教学建议:要求学生必须熟记旋转曲面面积的计算公式,掌握由参数方程定义的旋转曲面的面积. ————————————————————一 微元法用定积分计算几何中的面积,体积,弧长,物理中的功,引力等等的量,关键在于把所求量通过定积分表达出来. 元素法就是寻找积分表达式的一种有效且常用的方法. 它的大致步骤是这样的:设所求量 是一个与某变量(设为x )的变化区间有关的量,且关于区间 具有可加性. 我们就设想把 分成n 个小区间,并把其中一个代表性的小区间记坐, 然后就寻求相应于这个小区间的部分量 的近似值(做这一步的时候,经常画出示意图帮助思考),如果能够找到的形如 近似表达式(其中 为 上的一个连续函数在点x 处的值,为小区间的长度),那么就把 称为量的元素并记做 ,即 dx x f dU )(= 以量 的元素作为被积表达式在 上进行积分,就得到所求量 的积分表达式:⎰badx x f )(例如求由两条曲线)(,)(21x f y x f y == (其中],[,21b a C f f ∈)及直线 b x a x ==, 所为成图形的面积A.容易看出面积元素dx x f x f DA |)()(|21-=于是得平面图形b x a x f y x f ≤≤≤≤,)()(21 的面积为⎰-=badx x f x f A |)()(|21采用微元法应注意一下两点:1)所求量 关于分布区间具有代数可加性.2))()(x o x x f U ∆=∆-∆ 对于前面所讲过的平面图形的面积、立体体积、曲线弧长相应的微元分别为:x y s x x S V xy S ∆'+≈∆∆≈∆∆≈∆21)(||二 旋转曲面的面积§5 定积分在物理中的某些应用(一) 教学目的:掌握定积分在物理中的应用的基本方法.(二) 教学内容:液体静压力;引力;功与平均功率.基本要求:(1)要求学生掌握求液体静压力、引力、功与平均功率的计算公式.(2) 较高要求:要求学生运用微元法导出求液体静压力、引力、功与平均功率的计算公式.(三) 教学建议:要求学生必须理解和会用求液体静压力、引力、功与平均功率的计算公式.——————————————————————————1 变力沿直线所作的功从物理学知道,如果物体在做直线运动的过程中受到常力F 作用,并且力F 的方向与物体运动的方向一致,那么,当物体移动了距离s 时,力F 对物体所作的功是 FS W =如果物体在运动过程中所受到的力是变化的,那么就遇到变力对物体作功的问题,下面通过例1说明如何计算变力所作的功例1 把一个带电量为 的点电荷放在 轴的原点 处,它产生一个电场,并对周围的电荷产生作用力,由物理学知道,如果有一个单位正电荷放在这个电场中距离原点 为 的地方,那么电场对它的作用力的大小为2r q kF =( 是常数),如图,当这个单位正电荷在电场中从 处沿 轴移动到)(b a b r <=处时,计算电场力 对它所做得功.解 在上述移动过程中,电场对这个单位正电荷的作用力是不断变化的,取 为积分变量,它的变化区间为 ,在 上任取一小区间 ,当单位正电荷从 移动到时,电场力对它所作的功近似于dr r kq 2,从而得功元素为于是所求的为例2 某水库的闸门形状为等腰梯形,它的两条底边各长10m 和6m,高为20m,较长的底边与水面相齐,计算闸门的一侧所受的水压力。
解 如图3.9.2 以闸门的长底边的中点为原点且铅直向下作 轴,取 为积分变量,它的变化范围为 .在 上任取一个小区间,闸门上相应于该小区间的窄条各点处所受到水的压强近似于)/(2m kN xg ,这窄条的长度近似为510x,高度为 ,因而这一窄条的一侧所受的水压力近似为这就是压力元素,于是所求的压力为例3 设有一根长度为 、线密度为 的均匀细直棒,在其中垂线上距棒 单位处有一质量为 的质点。
试计算该棒对质点 的引力解 取坐标系如图3.9.3所示,使棒位于 轴上,质点位于 轴上,棒的中点为原点 ,取 为积分变量,它的变化区间为。
在 上任取一小区间 ,把细直棒上相应于的一段近似的看成质点,其质量为 ,与 相距,因此可以按照两质点间的引力计算公式求出这段细直棒对质点 的引力 的大小为 从而求出 在水平方向分力 的近似值,即细直棒对质点 的引力在水平方向分力x F 的元素为 2/322)(y a dy am k dF x +-=ρ 于是得到引力在水平方向的分力为上式中的负号表示 指向 轴的负向,又由对称性知,引力在铅直方向分力为平均值内容概述:本节介绍函数的平均值求法学习时数:2学习目标:了解平均值的求法学习要点:函数的算术平均值、函数的加权平均值、函数的均方平均值学习基础:微积分基本定理函数的算术平均值在实际问题中,常常用一组数据的算术平均值来描述这组数据的概貌。
例如,对某一零件的长度进行次 测量,测得的值为 。
这时,可以用 的算术平均值作为这一零件的长度的近似值。
但是,在工程技术与自然科学中,有时还要考虑一个连续函数在区间 上所取得“一切值”的平均值。
例如求交流电在一个周期上的平均功率就是这样的例子。
下面就来讨论如何规定即计算连续函数在区间 上的平均值。
先把区间 分成 等分,设分点为每个小区间的长度为)1,,2,1(-=-=∆n i n a b x i ,设在这些分点处 的函数值依次为 n y y y ,,,21 ,那么可以用n y y y ,,,21 的平均值来近似表达函数 在 上所取的"一切值"的平均值,如果 取的比较大,那么上述平均值就能比较确切地表达函数在 上所取的"一切值"的平均值.因此自然地,我们就称极限为函数 在区间 上的算术平均值(简称平均值).现在因此得连续函数在区间 上的平均值 等于函数 在区间 上的定积分除以区间 的长度 , 即(3.10.2)请读者注意我们是怎样从有限多个数值的算术平均值的概念出发,演化出连续函数在一个区间上的平均值的定义的,其中关键之举是使用了极限方法.函数的加权平均值我们以商业中的一个问题为例来讨论函数的加权平均.假设某商店销售某种商品,以每单位商品售价 元,销售了 各单位商品,调整价格后以每单位商品售价 元, 销售了 个单位商品. 那么,在整个销售过程中, 这种上平的平均售价为212211q q q p q p ++ (元) 这种平均成为加权平均. 一般地设n y y y ,,,21 为实数, n k k k ,,,21 ,称为n y y y ,,,21 关于n k k k ,,,21 的加权平均值,其中n y y y ,,,21 称为资料数据n k k k ,,,21 称为权数. 当),,2,1(1n i k i == 时, 加权平均就是算术平均。
现在我们讨论连续变量的情形. 假设某商店销售某种商品, 在时间段内, 该商品的售价与单位时间内的销售量都与时间有关. 如果已知在时刻 时, 售价 , 单位时间内的销售量 , 那么如何计算这种商品在时间段上的平均售价呢? 下面我们用元素法分析, 并且给出他的计算方法.在区间上任取一小区间 . 在这短暂的时间间隔内, 这种商品的售价近似于 , 销售的数量近似于 , 因此, 在这段短暂的时间间隔内, 销售这种商品所得到的收益近似于,这就是在这段时间内销售这种商品所得收益的元素于是, 在这段时间内销售这种商品的总收益与销售总量分别为⎰=2 1)( )(TTdttqtpR与⎰=21)(TTdt tqQ从而这段时间内这种商品的平均售价为一般地,如果 , , 且那么成为函数关于权数在区间上的加权平均值.若令 , 加权平均就变成了算术平均积分学的背景 积分学的工作由求面积开始.早在古希腊时期,阿基米德就求过抛物线下的方形面积.我国刘徽的割圆术,也是同一思想.18世纪英国伟大的物理学家、数学家牛顿从运动学的角度出发创立了微积分学.他认为线是点连续运动的结果,运动质点的轨迹是一条曲线;变量就是量的连续运动,变量的无穷小增量为"瞬",他给出了求一个变量关于时间的瞬时变化率的普遍方法,并且证明了面积可以由求变化率的逆过程得到.与牛顿几乎是同时创立微积分的德国数学家莱布尼兹是从几何学的角度来考虑问题的.他很早就意识到,求曲线的切线的斜率依赖于纵坐标的差值与横坐标的差值之比,而求面积则依赖于在横坐标上无穷小区间的纵坐标之和或无限窄矩形之和.并且这种求差与求和的运算是互逆的.由此可知,莱布尼兹是将微分看承变量相邻无限小的差,而积分则是由变量分成无穷多微分之和.他引进了记号" "," "表示微分," "表示积分, 和 是互逆定积分 问题1: 曲边梯形的面积问题2:变速直线运动的路存在定理 广义积分定积分的性质定积分的 计算法 牛顿-莱布尼茨公式 )()()(a F b F dx x f b a -=⎰定积分小结刘 辉的运算.莱布尼兹是历史上最伟大的符号数学家之一,他所创立的微积分符号对飞机粉的传播和发展产生了很大的影响,并且一直沿用至今.下面我们来看看微积分名称的由来.牛顿称微积分为流数法(fluxious),这个名称后来逐渐被淘汰了.莱布尼兹使用"差的计算"(Calculus differentialis)与"求和运算"(Calculus summatorius)的术语.莱布尼兹的朋友瑞士数学家约翰伯努利主张把"求和运算"改为"求整运算",它就成为专门术语"积分学"(integral calcullus)的来源.两者合起来叫做微积分,英文里简称"Calculus",在本章和下一章里,我们分别来学习不定积分(Indefinite integral calculus)和定积分(Definite integral calculus)牛顿(I.Newton 1642.12.25—1727.3.3)英国数学家和物理学家出生在一个农民家庭,出生前父亲就去世了,三岁时母亲改嫁,由外祖母抚养。
1661年入剑桥大学,1665年获学士学位,1668年获硕士学位。
由于他出色的成就,1669年巴鲁(Barrow)把数学教授的职位让给年仅26岁的牛顿。