当前位置:文档之家› 2018届高考物理二轮复习变质量计算问题专题卷

2018届高考物理二轮复习变质量计算问题专题卷

100考点最新模拟题千题精练14- 61.(10分)用传统的打气筒给自行车打气时,不好判断是否已经打足了气.某研究性学习小组的同学经过思考,解决了这一问题.他们在传统打气筒基础上进行了如下的改装(示意图如图甲所示):圆柱形打气筒高H ,内部横截面积为S ,底部有一单向阀门K ,厚度不计的活塞上提时外界大气可从活塞四周进入,活塞下压时可将打气筒内气体推入容器B 中,B 的容积V B =3HS ,向B 中打气前A 、B 中气体初始压强均为p 0,该组同学设想在打气筒内壁焊接一卡环C (体积不计),C 距气筒顶部高度为h =23H ,这样就可以自动控制容器B 中的最终压强.求:①假设气体温度不变,第一次将活塞从打气筒口压到C 处时,容器B 内的压强; ②要使容器B 内压强不超过5p 0,h 与H 之比应为多大.2.(2016·陕西五校一模)如图所示是农业上常用的农药喷雾器,贮液筒与打气筒用细连接管相连,已知贮液筒容积为8 L(不计贮液筒两端连接管体积),打气筒活塞每循环工作一次,能向贮液筒内压入1 atm 的空气200 mL ,现打开喷雾头开关K ,装入6 L 的药液后再关闭,设周围大气压恒为1 atm ,打气过程中贮液筒内气体温度与外界温度相同且保持不变。

求:(1)要使贮液筒内药液上方的气体压强达到3 atm,打气筒活塞需要循环工作的次数;(2)打开喷雾头开关K直至贮液筒内、外气压相同时,贮液筒向外喷出药液的体积。

【参考答案】(1)20次(2)4 L由理想气体方程得:p1V1=p2V2解得:V=4 L打气次数:n=V0.2 L=20(2)打开喷雾头开关K直至贮液筒内外气压相同时,p3=1 atm由理想气体方程得:p1V1=p3V3解得:V3=V1=6 L故喷出药液的体积V′=V3-V0=4 L3.(2016·山西省高三质检) (2)型号是LWH159-10.0-15的医用氧气瓶,容积是10 L,内装有1.80 kg的氧气。

使用前,瓶内氧气压强为1.4×107 Pa,温度为37 ℃。

当用这个氧气瓶给患者输氧后,发现瓶内氧气压强变为7.0×106 Pa,温度降为27 ℃,试求患者消耗的氧气的质量。

4.(2016河北邯郸一中质检)如图所示蹦蹦球是一种儿童健身玩具,小明同学在17℃的室内对蹦蹦球充气,已知两球的体积约为2L,充气前的气压为1atm,充气筒每次充入0.2L的气体,忽略蹦蹦球体积变化及充气过程中气体温度的变化,求:①充气多少次可以让气体压强增大至3atm;②室外温度达到了﹣13℃,蹦蹦球拿到室外后,压强将变为多少?【名师解析】①据题充气过程中气体发生等温变化,由玻意耳定律求解.②当温度变化,气体发生等容变化,由查理定律求解.①设充气n次可以让气体压强增大至3atm.据题充气过程中气体发生等温变化,以蹦蹦球内原来的气体和所充的气体整体为研究对象,由玻意耳定律得:P1(V+n△V)=P2V代入:1×(2+n×0.2)=3×2解得 n=20(次)②当温度变化,气体发生等容变化,由查理定律得:=可得 P3=P2=×3atm≈2.8atm答:①充气20次可以让气体压强增大至3atm;②室外温度达到了﹣13℃,蹦蹦球拿到室外后,压强将变为2.8atm.【点评】本题的关键要明确不变量,运用玻意耳定律和查理定律求解,解题要注意确定气体的初末状态参量.5.(12分)(2016上海静安期末)一质量M=10kg、高度L=35cm的圆柱形气缸,内壁光滑,气缸内有一薄活塞封闭了一定质量的理想气体,活塞质量m=4kg、截面积S=100cm2。

温度t0=27℃时,用绳子系住活塞将气缸悬挂起来,如图甲所示,气缸内气体柱的高L1=32cm,如果用绳子系住气缸底,将气缸倒过来悬挂起来,如图乙所示,气缸内气体柱的高L2=30cm,两种情况下气缸都处于竖直状态,取重力加速度g=9.8m/s2,求:(1)当时的大气压强;(2)图乙状态时,在活塞下挂一质量m′=3kg的物体,如图丙所示,则温度升高到多少时,活塞将从气缸中脱落。

【参考答案】(1)p0=9.8×104Pa(2)t=66℃可解得p 0=(ML 1-mL 2)g (L 1-L 2)S =9.8×104Pa (2分)(2)活塞脱落的临界状态:气柱体积LS (1分)、 压强p 3=p 0-mg+m ′gS (1分) 设温度为t ,由气态方程:p 2 L 2S t 0+273 =p 3LSt +273(2分)得t =p 3L (t 0+273) p 2L 2 -273=66℃(2分)(若取g =10m/s 2,则t =66.3℃,减1分)6.(2016东北四市模拟)如图,将导热性良好的薄壁圆筒开口向下竖直缓慢地放入水中,筒内封闭了一定质量的气体(可视为理想气体)。

当筒底与水面相平时,圆筒恰好静止在水中。

此时水的温度t 1=7.0℃,筒内气柱的长度h 1=14 cm 。

已知大气压强p 0=1.0×105Pa ,水的密度ρ=1.0×103kg/m 3,重力加速度大小g 取10 m/s 2。

(i )若将水温缓慢升高至27℃,此时筒底露出水面的高度Δh 为多少?(ii )若水温升至27℃后保持不变,用力将圆筒缓慢下移至某一位置,撤去该力后圆筒恰能静止,求此时筒底到水面的距离H (结果保留两位有效数字)。

【名师解析】(i )设圆筒的横截面积为S ,水温升至27℃时,气柱的长度为h 2,根据盖·吕萨克定律有1212h S h ST T =①(2分)圆筒静止,筒内外液面高度差不变,有21h h h ∆=-②(2分)由①②式得1 cm h ∆=③(1分)(ii )设圆筒的质量为m ,静止在水中时筒内气柱的长度为h 3。

则 1gh S mg ρ=3gh S mg ρ=④(2分)圆筒移动过程,根据玻意耳定律有[]012033)()p gh h S p g H h h S ρρ+=++(⑤(2分)由④⑤式得 =72 cm H⑥(1分)7。

(9分)(2016安徽桐城八中质检)如右图所示,玻璃管粗细均匀(粗细可忽略不计), 竖直管两封闭端内理想气体长分别为上端30cm 、下端27cm ,中间水银柱长10cm .在竖直管中间接一水平玻璃管,右端开口与大气相通,用光滑活塞封闭5cm 长水银柱.大气压p 0=75cmHg .① 求活塞上不施加外力时两封闭气体的压强各为多少?② 现用外力缓慢推活塞恰好将水平管中水银全部推入竖直管中,求这时上下两部分气体的长度各为多少?②设玻璃管横截面积为S,气体发生等温变化,由玻意耳定律得:对上端封闭气体,P上L上S=P上′L上′S(1分)对上端封闭气体,P下L下S=P下′L下′S(1分)P上′+15=P下′ (1分)L上′+L下′=52 (1分)联立以上式解得:L上′=28cm,L下′=24cm;(2分)答:(1)活塞上不施加外力时两封闭气体的压强各为70cmHg、80cmHg.(2)上下两部分气体的长度各为28cm、24cm.8. (10分)(2016上海金山区期末)如图,两端封闭的U型细玻璃管竖直放置,管内水银封闭了两段空气柱。

初始时空气柱长度分别为l1=10cm、l2=16cm,两管液面高度差为h=6cm,气体温度均为27℃,右管气体压强为P2=76cmHg。

(1)若保持两管气体温度不变,将装置以底边AB为轴缓慢转动90度,求右管内空气柱的最终长度;(2)若保持右管气体温度不变,缓慢升高左管气体温度,求两边气体体积相同时,左管气体的温度。

9.(2017全国III 卷·33·2)一种测量稀薄气体压强的仪器如图(a )所示,玻璃泡M 的上端和下端分别连通两竖直玻璃细管1K 和2K 。

1K 长为,顶端封闭,2K 上端与待测气体连通;M 下端经橡皮软管与充有水银的容器R 连通。

开始测量时,M 与2K 相通;逐渐提升R ,直到2K 中水银面与1K 顶端等高,此时水银已进入1K ,且1K 中水银面比顶端低h ,如图(b )所示。

设测量过程中温度、与2K 相通的待测气体的压强均保持不变,已知1K 和2K 的内径均为d ,M 的容积为0V ,水银的密度为ρ,重力加速度大小为g 。

求:橡皮软管与待测气体连通21lRK MK K MK Rh12与待测气体连通橡皮软管(i )待测气体的压强;(ii )该仪器能够测量的最大压强。

【答案】(i )()220204gh d p V d l h πρπ=+-;(ii )22max 04gl d p V πρ=设末状态时研究对象压强为1p ,末状态时由理想气体状态方程有, 1p hSC T= ②由连通器原理有: 10p p gh ρ=+③联立以上方程可解出:()220204gh d p V d l h πρπ=+-(ii )随着h 的增加,0p 单调递增,由题意有,当h l =时是该仪器能够测量的最大压强,即,22max 04gl d p V πρ=10.(2017全国II 卷·33·2)一热气球体积为V ,内部充有温度为T a 的热空气,气球外冷空气的温度为T b 。

已知空气在1个大气压、温度为T 0时的密度为ρ0,该气球内、外的气压始终都为1个大气压,重力加速度大小为g 。

(i )求该热气球所受浮力的大小; (ii )求该热气球内空气所受的重力;(iii )设充气前热气球的质量为m 0,求充气后它还能托起的最大质量。

【参考答案】(i )00bgVT T ρ (ii )00agVT T ρ (iii )00000baVT VT m T T ρρ--【参考解析】(i )设1个大气压下质量为m 的空气在温度T 0时的体积为V 0,密度为00mV ρ=① 温度为T 时的体积为V T ,密度为:()Tm T V ρ=②由盖吕萨克定律可得:00TV V T T=③ 联立①②③解得:0()T T Tρρ= ④ 气球所受的浮力为:()b f T gV ρ= ⑤ 联立④⑤解得: 00bgVT f T ρ=⑥。

相关主题