7.4 数学归纳法上海市建平中学李坚一、教学内容分析数学归纳法是一种用于证明与自然数n有关的命题的正确性的证明方法.它的操作步骤简单、明确,教学重点应该是方法的应用.但是我们认为不能把教学过程当作方法的灌输,技能的操练.对方法作简单的灌输,学生必然疑虑重重.为什么必须是二步呢?于是教师反复举例,说明二步缺一不可.你怎么知道n=k时命题成立呢?教师又不得不作出解释,可学生仍未完全接受.学完了数学归纳法的学生又往往有应该用时但想不起来的问题,等等.为此,我们设想强化数学归纳法产生过程的教学,把数学归纳法的产生寓于对归纳法的分析、认识当中,把数学归纳法的产生与不完全归纳法的完善结合起来.这样不仅使学生可以看到数学归纳法产生的背景,从一开始就注意它的功能,为使用它打下良好的基础,而且可以强化归纳思想的教学,这不仅是对中学数学中以演绎思想为主的教学的重要补充,也是引导学生发展创新能力的良机.数学归纳法产生的过程分二个阶段,第一阶段从对归纳法的认识开始,到对不完全归纳法的认识,再到不完全归纳法可靠性的认识,直到怎么办结束.第二阶段是对策酝酿,从介绍递推思想开始,到认识递推思想,运用递推思想,直到归纳出二个步骤结束.理解数学归纳法中的递推思想,还要注意其中第二步,证明n=k+1命题成立时必须用到n=k 时命题成立这个条件.二、教学目标设计1. 从对归纳法的认识开始,到对不完全归纳法的认识,再到不完全归纳法可靠性的认识,再到数学归纳法的科学性的认识;2.对数学归纳法的叙述数学步骤地掌握;3.形成观察、归纳、推广的意识,提高运用知识解决问题的能力,渗透分类讨论、方程等数学思想方法.三、教学重点及难点重点:归纳法意义的认识和数学归纳法产生过程的分析;难点:数学归纳法中递推思想的理解.四、教学用具准备实物投影仪五、教学流程设计六、教学过程设计一、复习引入问题1:这里有一袋球共十二个,我们要判断这一袋球是白球,还是黑球,请问怎么办? 方法一:把它倒出来看一看就可以了.特点:方法是正确的,但操作上缺乏顺序性.方法二:一个一个拿,拿一个看一个.比如结果为:第一个白球,第二个白球,第三个白球,……,第十二个白球,由此得到:这一袋球都是白球.特点:有顺序,有过程.问题2:在数列{}n a 中,*111,,()1n n na a a n N a +==∈+,先算出234,,a a a 的值,再推测通项n a 的公式.过程:212a =,313a =,414a =,由此得到:*1,()n a n N n=∈, 解决以上两个问题用的都是归纳法.二、讲解新课:1. 归纳法:由一些特殊事例推出一般结论的推理方法.特点:由特殊→一般.2. 不完全归纳法: 根据事物的部分(而不是全部)特例得出一般结论的推理方法叫做不完全归纳法.如我们在推导涉及所有正整数的等差数列通项公式时,在考察了n=1,2,3,4几种特殊情形后得出的一般公式,就是作的一种不完全归纳.我们已经知道,不完全归纳法所得到的命题并不能保证它成立,所以这种方法并不能作为一种论证方法;同时也应看到,不完全归纳法是研究数学的一把钥匙,是发现数学规律的一种重要手段.在问题探索中,为了寻求一般规律,往往先考察一些特例,通过对这些特例的不完全归纳形成猜想,然后再试图去证明或否定这种猜想.因而学会用不完全归纳法对问题进行探索,对提高我们的数学能力十分重要.3. 完全归纳法: 把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法.完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又叫做枚举法.与不完全归纳法不同,用完全归纳法得出的结论是可靠的.通常在事物包括的特殊情况数不多时,采用完全归纳法.4.数学归纳法:对于某些与自然数n 有关的命题常常采用下面的方法来证明它的正确性:先证明当n 取第一个值n 0时命题成立;然后假设当n=k(k ∈N *,k ≥n 0)时命题成立,证明当n=k+1时命题也成立这种证明方法就叫做数学归纳法.5. 数学归纳法的基本思想:即先验证使结论有意义的最小的正整数n 0,如果当n= n 0时,命题成立,再假设当n=k(k ≥n 0,k ∈N *)时,命题成立.(这时命题是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于n 0的正整数n 0+1,n 0+2,…,命题都成立.6.用数学归纳法证明一个与正整数有关的命题的步骤:(1)证明:当n 取第一个值n 0结论正确;(2)假设当n=k(k ∈N *,且k ≥n 0)时结论正确,证明当n=k+1时结论也正确.由(1),(2)可知,命题对于从n 0开始的所有正整数n 都正确.三、例题分析例1 用数学归纳法证明:如果{a n }是一个等差数列,那么a n =a 1+(n -1)d 对一切n ∈N *都成立.证明:(1)当n=1时,左边=a 1,右边=a 1+0·d=a 1,等式成立.(2)假设当n=k 时等式成立,就是a k =a 1+(k -1)d.那么a k +1=a k +d=[a 1+(k -1)d ]+d=a 1+[(k+1)-1]d ,这就是说,当n=k+1时,等式也成立.由(1)和(2)可以判定,等式对任何n ∈N *都成立.例2 用数学归纳法证明:1+3+5+…+(2n -1)=n 2.证明:(1)当n=1时,左边=1,右边=1,等式成立.(2)假设当n=k 时,等式成立,就是1+3+5+…+(2k -1)=k2,那么1+3+5+…+(2k -1)+[2(k+1)-1]=k 2+[2(k+1)-1]=k 2+2k+1=(k+1)2.∴n=k+1时也成立.由(1)和(2),可知等式对任何n ∈N *都成立.四、课堂练习: 1.用数学归纳法证明:1+2+3+…+n=(1)2n n +. 证明:(1)当n=1时,左边=1,右边=1(11)2⨯+=1.∴等式成立. (2)假设当n=k 时,等式成立,即1+2+3+…+k=(1)2k k +. 那么当n=k+1时,11123(1)(1)(1)(1)(11)22k k k k k k k +++⋅⋅⋅+++=+++=+++ ∴n=k+1时,等式也成立. 由(1)(2)可知等式对一切n ∈N *都成立.2.首项为a 1,公比为q 的等比数列的通项公式是:a n =a 1q n-1.证明:(1)n=1时,左边=a 1,右边=a 1·q 1-1=a 1q 0=a 1.∴左边=右边.(2)假设当n=k 时等式成立.即a k =a 1q k -1.那么当n=k+1时.a k +1=a k q=a 1q k -1·q=a 1q (k+1)-1.∴n=k+1时等式也成立.由(1)、(2)可知等式对一切n∈N*都成立.五、课堂小结 (引导学生归纳,教师提炼)(1)中心内容是归纳法和数学归纳法;(2)归纳法是一种由特殊到一般的推理方法,分类是完全归纳法和不完全归纳法二种,完全归纳法只局限于有限个元素,而不完全归纳法得出的结论不具有可靠性,必须用数学归纳法进行严格证明;(3)数学归纳法作为一种证明方法,它的基本思想是递推(递归)思想,它的证明步骤必须是两步,最后还要总结;(4)本节课所涉及到的数学思想方法有:递推思想、分类讨论思想、数形结合思想、函数与方程思想.六、作业七、教学设计说明数学归纳法是一种用于证明与自然数n有关的命题的正确性的证明方法.它的操作步骤简单、明确,教学重点不应该是方法的应用,不能把教学过程当作方法的灌输,技能的操练.所以要强化数学归纳法产生过程的教学,把数学归纳法的产生寓于对归纳法的分析、认识当中,把数学归纳法的产生与不完全归纳法的完善结合起来.这样不仅使学生可以看到数学归纳法产生的背景,从一开始就注意它的功能,为使用它打下良好的基础,而且可以强化归纳思想的教学,这不仅是对中学数学中以演绎思想为主的教学的重要补充,也是引导学生发展创新能力的良机.运用数学归纳法证明与正整数有关的数学命题,两个步骤缺一不可.理解数学归纳法中的递推思想,尤其要注意其中第二步,证明n=k+1命题成立时必须要用到n=k时命题成立这个条件.这些内容都将放在下一课时完成,这种理解不仅使我们能够正确认识数学归纳法的原理与本质,也为证明过程中第二步的设计指明了思维方向.相关数学史资料介绍资料1: 费马(Fermat)是17世纪法国著名的数学家,他是解析几何的发明者之一,是对微积分的创立作出贡献最多的人之一,是概率论的创始者之一,他对数论也有许多贡献.但n 一定都是质数,这是他对n=0,1,2,3,4时的值分别是,费马曾认为,当n∈N时,221为3,5,17,257,65537作了验证后得到的.18世纪伟大的瑞士科学家欧拉(Euler)却证明了当n=5时,52=4 294 967 297=6 700 417×641,从而否定了费马的推测.21有人说,费马为什么不再多算一个数呢?今天我们是无法回答的.但是要告诉同学们,失误的关键不在于多算一个上!资料2:f(n)=n2+n+41,当n∈N时,f(n)是否都为质数?f(0)=41,f(1)=43,f(2)=47,f(3)=53,f(4)=61,f(5)=71,f(6)=83,f(7)=97,f(8)=113,f(9)=131,f(10)=151,… f(39)=1 601.但是f(40)=1 681=412是合数.算了39个数不算少了吧,但还不行!我们介绍以上两个资料,说明用不完全归纳法得出的结论可能是错误的.对于生活、生产中的实际问题,得出的结论的正确性,应接受实践的检验,因为实践是检验真理的唯一标准.对于数学问题,应寻求数学证明.。