第一章材料的断裂和机械强度
1. 晶粒尺寸的影响
晶界的化学键合比晶粒内部弱,晶粒的断裂能要明显 高于晶界,而且晶界是杂质和缺陷的存在和富集之处,所 以多晶材料多沿晶界断裂。晶粒越细,则断裂表面积越大, 断裂能越高。断裂强度与晶粒尺寸d-1/2成正比关系。
2. 气孔的影响
材料的强度一般随着气孔率的提高而下降,这是由于 气孔的存在不但使材料的实际受力面积减小,而且还会在 周围引起应力集中。同样的气孔率,气孔尺寸越不均一, 分布越不均匀、形状越尖锐,对强度的影响就越大。
1.3.4 断裂力学与材料的断裂韧性
用断裂力学建立起的断裂判据,能真正用于设计上,它能告 诉我们,在给定裂纹尺寸和形状时,究竟允许多大的工作应力才 不致发生脆断;反之,当工作应力确定后,可根据断裂判据确定 构件内部在不发生断裂的前提下所允许的最大裂纹尺寸。
1 裂纹的形成
(1)位错导致裂纹核形成
当位错运动遇到障碍(如晶界、 第二相等)或者遇到由位错反应 形成的不动位错而产生赛积,引 起 局部应力集中,达到理论断 裂强度时,就会导致局部的开裂 而形成解理裂纹。
Griffith 判据
GIC
c
2 c
E
KC Y f c
Y
KIC GIC E 2E f
KIC与材料的本征参数E和γ等物理量有直接的 关系,反映了材料抵抗裂纹扩展的能力。
断裂韧性的测试
预制人工裂纹,对试样加载使之破坏
加载速率过低,裂纹可能会在在KI<KIC的 条件下发生亚临界裂纹扩展,使测试结果 偏低;但加载速率过高,使测量结果偏高。
对于无限大平板含中心穿透裂纹, Y
断裂韧性KIC和断裂判据
裂纹尖端附近各点的应力随着KI值的增大而提 高, 当KI值随外力增大至临界值时,裂纹就 会快速扩展而导致构件断裂。这一临界状态所 对应的应力强度因子KIC称为临界应力强度因 子,单位为Pa﹒m1/2
KC Y f c
式中临界应力 f
材料的断裂强度。
2 裂纹扩展的基本方式
3. 裂纹尖端区域的应力场与应力场强度因子
一均匀受力的无限大平板含有 长度为2c的I型裂纹,在其尖 端(r, θ)处的应力分量为:
上式写成一般通式为:
K
2 r பைடு நூலகம்/2
fij ( )
可以得到
K c Y c
KI反映了裂纹尖端应力场的强度,称为应力场强度因子, 单位为Pa﹒m1/2,但是由于各种裂纹的具体情况有差别, 表达式不同。Y称为几何形状因子,其值随裂纹的形态、 试样形状与加载方式的不同而异,一般情况Y的值介于 1~2之间,无量纲。
(2)材料制备和使用过程中形成的裂纹
夹杂物与基体热膨胀系数不一致产生热应力导致微裂纹 第二相相变发生体积和形状的改变导致微裂纹 热膨胀系数和弹性模量显著各向异性,当温度或应力改变时在晶 界处产生内应力,导致微裂纹 基体内部致密度相差较大,在烧结过程中收缩不均导致微裂纹
(3)材料表面由机械损伤和化学腐蚀形成的表面 裂纹
根据热力学和经典力学中的能量守恒定律,分析含裂纹 的固体在应力作用下自由能的变化,首次证明了脆性材料 的实际强度显著低于理论值的原因。
同样的材料,大试样的强度低于小试样 ?
要使材料具有高的断裂强度,就要求材料的弹性模量和 断裂表面能打,而裂纹尺寸小。
1.3.3 材料的显微结构与强度的关系
材料的显微结构包括多晶材料中晶界的特征及多 晶中晶粒的大小、形状和取向。 陶瓷材料和高分子材料还包括晶向及非晶相的分 布;气孔的尺寸、数量与位置,各种杂质、添加 物、缺陷、微裂纹的存在形式及分布; 金属材料还包括共晶组织、马氏体组织等。
布氏硬度和洛氏硬度试验---金属材料。
布氏硬度的测定原理是用一定大小的载荷F(kgf),把直径 为D(mm)的淬火钢球或硬质合金球压入试样表面,保持规定时 间后卸除载荷,测量试样表面的残留压痕直径d,求压痕的表面 积S。将单位压痕面积承受的平均压力(F/S)定义为布氏硬度, 其符号用HB表示。
布氏硬度试验的优点是压痕面积较大,能反映材料在较大区域 内各组成相的综合平均性能,数据稳定,重复性高。缺点是压痕 直径较大,一般不宜在成品件上直接进行试验,不适合薄件和表 面层硬度的测试,对于测量硬度高的材料,钢球本身会产生变形。
强度的测试
拉伸强度、弯曲强度、压缩强度和扭转强度,针对 不同的材料选择不同的测试方法,注意试样的大小会影 响测试结果。
断裂强度的统计性质
材料的断裂起源于内部存在的最危险裂纹。因此材 料的强度值与平均值之间存在较大的偏差。Weibull提 出经验分布的方法,是一种“最弱环”方法,认为物体 的强度与一系列独立体积单元的幸存概率有关。类似于 一根链条取决于最弱的环节,链条断裂后,链条剩余部 分的强度又由该部分的最弱环节决定,而且剩余部分的 强度比断裂前链条的强度高,以此类推。
1.3 材料的断裂与机械强度
延性断裂和脆性断裂
高度延性的 软质材料, 断裂前严重 颈缩(塑性 形变),最 后发生点断 裂;
脆性材料, 断裂前没有 颈缩,断口 平坦。
1.3.1 理论断裂强度
可见固体的理论断裂强度取决于材料的 弹性模量、表面能和晶格常数。面间距越 小,弹性模量和表面能越大,固体材料的 理论断裂强度就越高。
实测的断裂强度只有理论值的百分之一, 只有极细的纤维和晶须的强度比较接近理 论强度值。主要是由于固体材料内部的缺 陷所致。
1.3.2 Griffith断裂理论和断裂强度
1921年,Griffith提出裂纹理论解释这一现象,认为裂纹 引起的应力集中导致的裂纹扩展使材料断裂(而不是两个 理论晶面的分离),因此材料的强度低于理论值。
1.3.5 材料的硬度
硬度反映材料表面局部抵抗塑性形变的能 力,主要取决于材料的组成和结构,原子间 的结合能越大,硬度就越高。
(1)莫氏硬度 莫氏硬度是划痕硬度,表示的是硬度相
对大小的顺序,而不是定量的软硬程度。按 典型矿物的相对软硬程度将硬度划分为10级, 金刚石为10.
(2) 布氏硬度和洛氏硬度硬度测 试.rmvb
洛氏硬度也是一种压入硬度试验方法,以测量 压痕深度值的大小来表示材料的硬度值,以HR来表 示。试验的压头为圆锥角等于120度的金刚石圆锥 或直径为1.588mm或3.175mm的淬火钢球。用压痕凹 陷深度t来表征材料的硬度,材料越软,t越大。