振动与波动部分相关习题(振动部分):一、计算题1. 一质量为10 g 的物体在x 方向作简谐振动,振幅为24 cm ,周期为4 s .当t =0时该物体位于x = 12 cm 处且向x 轴负方向运动.求:(1) 振动方程;(2) 物体从初位置到x =-12 cm 处所需的最短时间,此时物体的速度. 2.作简谐振动的小球,速度的最大值为-1max 4cm s =⋅v ,振幅为cm 2=A .若令速度具有正最大值的某时刻为计时点,求该小球运动的运动方程和最大加速度.3.已知某质点振动的初始位置为20Ax =,初始速度00>v (或说质点正向x 正向运动),周期为T ,求质点振动的振动方程.4.习题17.4-7,17-9,17-16 二、选择题1.在简谐振动的运动方程中,振动相位)(ϕω+t 的物理意义是[ ](A) 表征了简谐振子t 时刻所在的位置 (B) 表征了简谐振子t 时刻的振动状态(C) 给出了简谐振子t 时刻加速度的方向 (D) 给出了简谐振子t 时刻所受回复力的方向 2.如图1所示,把单摆从平衡位置拉开, 使摆线与竖直方向成 θ 角, 然后放手任其作微小的摆动.若以放手时刻为开始观察的时刻, 用余弦函数表示这一振动, 则其振动的初相位为[ ] (A) θ (B)2π 或π23(C) 0 (D) π 3.两质点在同一方向上作同振幅、同频率的简谐振动.在振动过程中, 每当它们经过振幅一半的地方时, 其运动方向都相反.则这两个振动的相位差为[ ](A) π (B) π32 (C) π34 (D) π544.一质点作简谐振动, 振动方程为)cos(ϕω+=t A x .则在2Tt =(T 为振动周期) 时, 质点的速度为[ ] (A) ϕωsin A - (B) ϕωsin A (C) ϕωcos A - (D) ϕωcos A5.一物体作简谐振动, 其振动方程为)4πcos(+=t A x ω.则在2Tt = (T 为周期)时, 质点的加速度为[ ] (A) 222ωA - (B) 222ωA (C) 223ωA - (D) 223ωA 6.一质点以周期T 作简谐振动, 则质点由平衡位置正向运动到最大位移一半处的最短时间为[ ](A)6T (B) 8T (C) 12T (D) T 1277.某物体按余弦函数规律作简谐振动, 它的初相位为2π3, 则该物体振动的初始状态为[ ](A) x 0 = 0 , v 0 > 0 (B) x 0 = 0 , v 0<0 (C) x 0 = 0 , v 0 = 0 (D) x 0 = -A , v 0 = 0图18.一作简谐运动质点的振动方程为π)21π2cos(5+=t x , 它从计时开始, 在运动一个周期后[ ] (A) 相位为零 (B) 速度为零 (C) 加速度为零 (D) 振动能量为零 9. 有一谐振子沿x 轴运动, 平衡位置在x = 0处, 周期为T , 振幅为A ,t = 0时刻振子过2Ax =处向x 轴正方向运动, 则其运动方程可表示为[ ] (A) )21cos(t A x ω= (B) )cos(2t A x ω=(C) )3π2sin(--=T t A x ω (D) )3π2cos(-=T t A x ω10. 已知一简谐振动系统的振幅为A , 该简谐振动动能为其最大值一半的位置是[ ](A)12A (B) 22A (C) 32A (D) A 11. 一弹簧振子作简谐振动, 其振动方程为: π)21cos(+=t A x ω.则该物体在t = 0时刻的动能与8T t = (T 为周期)时刻的动能之比为 [ ](A) 1:4 (B) 2:1 (C) 1:1 (D) 1:212. 一弹簧振子作简谐振动, 当其偏离平衡位置的位移大小为振幅的1/4时, 其动能为振动总能量的[ ] (A)167 (B) 1615 (C) 169 (D) 1613 13.如果两个同方向同频率简谐振动的振动方程分别为π)433cos(73.11+=t x (cm)和 π)413cos(2+=t x (cm),则它们的合振动方程为[ ] (A) π)433cos(73.0+=t x (cm) (B) π)413cos(73.0+=t x (cm)(C) π)1273cos(2+=t x (cm) (D) π)1253cos(2+=t x (cm)14.下列说法正确的是[ ](A) 谐振子从平衡位置运动到最远点所需的时间为T 81(B) 谐振子从平衡位置运动到最远点的一半距离所需时间为8T (C) 谐振子从平衡位置出发经历T 121,运动的位移是A 31(D) 谐振子从平衡位置运动到最远点所需的时间为T 41三、填空题1. 一质点沿x 轴作简谐振动,平衡位置为x 轴原点,周期为T ,振幅为A .(1) 若t = 0 时质点过x = 0处且向x 轴正方向运动,则振动方程为x = .(2) 若t = 0时质点在2Ax =处且向x 轴负方向运动,则质点方程为x = . 2. 一质点沿x 轴作简谐振动, 其振动方程为: π)31π2cos(4-=t x (cm).从t =0时刻起, 直到质点到达2-=x cm 处、且向 x 轴正方向运动的最短时间间隔为 .3. 一个作简谐振动的质点,其谐振动方程为π)23cos(π1052+⨯=-t x (SI).它从计时开始到第一次通过负最大位移所用的时间为 .4. 一质点作简谐振动, 频率为2 Hz .如果开始时质点处于平衡位置, 并以-1s m π⋅的速率向x 轴的负方向运动, 则该质点的振动方程为 .5. 质量为0.01 kg 的质点作简谐振动, 振幅为0.1m, 最大动能为0.02 J .如果开始时质点处于负的最大位移处, 则质点的振动方程为 .6. 如果两个同方向同频率简谐振动的振动方程分别为π)3110sin(31+=t x cm 和)π6110sin(42-=t x cm, 则它们的合振动振幅为 .7.如图所示为两个谐振动的振动曲线。
若以余弦函数表示这两个振动的合成效果,则合振动的方程为x =21x x +=________________。
相关习题(波动部分):一、计算题1.已知波源在原点(0=x )的平面简谐波的方程为)cos(Cx Bt A y -=式中A 、B 、C 为正值恒量,试求(1)波的振幅、波速、频率、周期与波长;(2)写出传播方向上距离波源l 处一点的振动方程;(3)试求任何时刻,在波传播方向上相距为D 的两点的周相差。
2.一平面简谐波在t = 0 时刻的波形图如图所示,求 (1) 该波的波动表达式; (2) P 处质点的振动方程.(m) -2题图 3题图3.如图所示是一平面余弦波在t =0 时刻的波形图,波速为u =40m/s ,沿X 轴正方向传播,写出此波的波动表达式.4. 一简谐波,振动周期21=T s ,波长λ =10 m ,振幅A = 0.1 m. 当t = 0时刻,波源振动的位移恰好为正方向的最大值.若坐标原点和波源重合,且波沿Ox 轴正方向传播,求:(1) 此波的表达式;)(m)(2) 41T t =时刻,41λ=x 处质点的位移; (3) 42T t =时刻,41λ=x 处质点振动速度.5. 一列平面简谐波在介质中以波速u = 5m ⋅s -1沿x 轴正向传播,原点O 处质元的振动曲线如图所示. 求波动方程.6. 如图所示为一平面简谐波在t =0时刻的波形图,设此简谐波的频率为250 Hz ,且此时质点P 的运动方向向下,求(1) 该波的波动方程.(2) 在距原点O 为100 m 处质点的振动方程与振动速度表达式.7. 已知一平面简谐波的方程为 (SI))24(πcos x t A y +=(1) 求该波的波长λ,频率ν和波速度u 的值;(2) 写出t = 4.2 s 时刻各波峰位置的坐标表达式,并求出此时离坐标原点最近的那个波峰的位置; 8.一波源作简谐振动,周期为1001s ,振幅A =0.01m ,经平衡位置正方向运动时作为计时起点,设此振动以1s ms 400-⋅=u 的速度沿直线传播,求:(1)波动方程;(2)距波源为16m 处和20m 处的质点的振动方程和初相; (3)距波源为15m 和16m 的两点的相位差。
9.一平面简谐波沿x 轴正向传播,其振幅和角频率分别为A 和ω,波速为u ,设0=t 时的波形曲线如图所示。
(1)写出此波的表达式。
(2)求距O 点分别为λ和3λ两处质点的振动方程。
(3)求距O 点分别为λ和3λ两处质点在0=t 时的振动速度。
二、选择题1. 关于波,下面叙述中正确的是[ ](A) 波动方程中的坐标原点一定要放在波源位置(B) 机械振动一定能产生机械波(C) 质点振动的周期与波的周期数值相等 (D) 振动的速度与波的传播速度大小相等2. 当x 为某一定值时, 波动方程)π(2cos λxT t A x -=所反映的物理意义是[ ] (A) 表示出某时刻的波形 (B) 说明能量的传播(C) 表示出x 处质点的振动规律 (D) 表示出各质点振动状态的分布3. 已知一波源位于x = 5 m 处, 其振动方程为: )cos(ϕω+=t A y (m).当这波源产生的平面简谐波以波速u 沿x 轴正向传播时, 其波动方程为[ ]m(A) )(cos u x t A y -=ω (B) ])(cos[ϕω+-=u xt A y (C) ])5(cos[ϕω++-=u x t A y (D) ])5(cos[ϕω+--=ux t A y4. 若一平面简谐波的波动方程为)cos(cx bt A y -=, 式中A 、b 、c 为正值恒量.则[ ](A) 波速为c (B) 周期为b 1 (C) 波长为c π2 (D) 角频率为bπ2 5. 一平面简谐横波沿着Ox 轴传播.若在Ox 轴上的两点相距8λ(其中λ为波长), 则在波的传播过程中, 这两点振动速度的[ ](A) 方向总是相同 (B) 方向有时相同有时相反 (C) 方向总是相反 (D) 大小总是不相等6. 一简谐波沿Ox 轴正方向传播,t =0时刻波形曲线如图所示,其周期为2 s .则P 点处质点的振动速度v 与时间t 的关系曲线为 [ ]7. 平面简谐机械波在弹性介质中传播时, 在传播方向上某介质元在负的最大位移处, 则它的能量是(A) 动能为零, 势能最大 (B) 动能为零, 势能为零(C) 动能最大, 势能最大 (D) 动能最大, 势能为零8. 一平面简谐波在弹性介质中传播, 在介质元从最大位移处回到平衡位置的过程中[ ] (A) 它的势能转换成动能 (B) 它的动能转换成势能(C) 它从相邻的一段介质元中获得能量, 其能量逐渐增大 (D) 它把自己的能量传给相邻的一介质元, 其能量逐渐减小9. 人耳能分辨同时传来的不同声音, 这是由于[ ](A) 波的反射和折射 (B) 波的干涉(C) 波的独立传播特性 (D) 波的强度不同10. 两列波在空间P 点相遇, 若在某一时刻观察到P 点合振动的振幅等于两波的振幅之和, 则这两列波 [ ] (A) 一定是相干波 (B) 不一定是相干波(C) 一定不是相干波 (D) 一定是初相位相同的相干波11. 已知两相干波源所发出的波的相位差为π, 到达某相遇点P 的波程差为半波长的两倍, 则P 点的合成情况是[ ](A) 始终加强 (B) 始终减弱(C) 时而加强, 时而减弱, 呈周期性变化 (D) 时而加强, 时而减弱, 没有一定的规律 12. 在驻波中, 两个相邻波节间各质点的振动是[ ](A) 振幅相同, 相位相同 (B) 振幅不同, 相位相同AωsD ωsω-ω-ss(C) 振幅相同, 相位不同 (D) 振幅不同, 相位不同13. 方程为)π100cos(01.01x t y -=m 和)π100cos(01.02x t y +=m 的两列波叠加后, 相邻两波节之间的距离为[ ](A) 0.5 m (B) 1 m (C) π m (D) 2π m 三、填空题1. 如图所示,1S 和2S 为同相位的两相干波源,相距为L ,P 点距1S 为r ;波源1S 在P 点引起的振动振幅为1A ,波源2S 在P 点引起的振动振幅为2A ,两波波长都是λ,则P 点的振幅A = . 2.一驻波表达式为t x A y ωλπcos )2cos(2=,则λ21-=x 处质点的振动方程是_________________________;该质点的振动速度表达式是_____________________。