2020年高考模拟高考数学一模试卷一、填空题1.集合A={0,e x},B={﹣1,0,1},若A∪B=B,则x=.2.已知复数z=(i是虚数单位)则z的虚部是.3.log24+log42=.4.执行如图所示的程序框图,输出的s值为.5.在△ABC中,a=4,b=5,c=6,则=.6.已知函数,0≤φ≤π.若f(x)是奇函数,则的值为.7.已知f(x)=|log3x|,若a,b满足f(a﹣1)=f(2b﹣1),且a≠2b,则a+b的最小值为.8.将黑白2个小球随机放入编号为1,2,3的三个盒子中,则黑白两球均不在1号盒子的概率为9.若抛物线x2=4y的焦点到双曲线C:(a>0,b>0)的渐近线距离等于,则双曲线C的离心率为.10.设m,n为空间两条不同的直线,α,β为空间两个不同的平面,给出下列命题:①若m∥α,m∥β,则α∥β;②若m⊥α,m∥β,则α⊥β;③若m∥α,m∥n,则n∥α;④若m⊥α,α∥β,则m⊥β.其中的正确命题序号是.11.设x>0,y>0,向量=(1﹣x,4),=(x,﹣y),若∥,则x+y的最小值为.12.在△ABC中,点P是边AB的中点,已知||=,||=4,∠ACB=,则•=.13.已知正数a,b,c满足b2+2(a+c)b﹣ac=0,则的最大值为.14.若(m≠0)对一切x≥4恒成立,则实数m的取值范围是.二、解答题:共6小题,共90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.如图,四棱锥P﹣ABCD的底面为矩形,AB=,BC=1,E,F分别是AB,PC的中点,DE⊥PA.(Ⅰ)求证:EF∥平面PAD;(Ⅱ)求证:平面PAC⊥平面PDE.16.在三角形ABC中,已知,.(1)求角A的值;(2)若△ABC的面积为,求边BC的长.17.建造一个容积为8m3、深为2m的无盖长方体形的水池,已知池底和池壁的造价分别为120元/m2和80元/m2.(1)求总造价y(单位:元)关于底边一边长x(单位:m)的函数解析式,并指出函数的定义域;(2)如果要求总造价不超过2080元,求x的取值范围;(3)求总造价y的最小值.18.在直角坐标系xOy中,已知椭圆=1,若圆O:x2+y2=R2(R>O)的一条切线与椭圆C有两个交点A,B,且•=0.(1)求圆O的方程;(2)已知椭圆C的上顶点为M,点N在圆O上,直线MN与椭圆C相交于另一点Q,且=2,求直线MN的方程.19.已知函数.(1)若曲线y=f(x)在x=1处的切线的斜率为2,求函数f(x)的单调区间;(2)若函数f(x)在区间(1,e)上有零点,求实数a的取值范围.20.已知数列{a n}、{b n}、{c n},对于给定的正整数k,记b n=a n﹣a n+k,c n=a n+a n+k(n∈N*).若对任意的正整数n满足:b n≤b n+1,且{c n}是等差数列,则称数列{a n}为“H(k)”数列.(1)若数列{a n}的前n项和为S n=n2,证明:{a n}为H(k)数列;(2)若数列{a n}为H(1)数列,且a1=1,b1=﹣1,c2=5,求数列{a n}的通项公式;(3)若数列{a n}为H(2)数列,证明:{a n}是等差数列.【选做题】本题包括A、B、C三小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换]21.已知矩阵A=,B=,且AB=BA.(1)求实数a;(2)求矩阵B的特征值.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,已知直线为参数).现以坐标原点O为极点,以x轴非负半轴为极轴建立极坐标系,设圆C的极坐标方程为ρ=2cosθ,直线l与圆C交于A,B两点,求弦AB的长.[选修4-5:不等式选讲]23.已知x1,x2,x3∈(0,+∞),且满足x1+x2+x3=3x1x2x3,证明:x1x2+x2x3+x3x1≥3.【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.24.如图,在四棱锥P﹣ABCD中,已知棱AB,AD,AP两两垂直,长度分别为1,2,2.若=λ,且向量与夹角的余弦值为.(1)求实数λ的值;(2)求直线PB与平面PCD所成角的正弦值.25.已知(1+x)2n+1=a0+a1x+a2x2+…+a2n+1x2n+1,n∈N*.记T n=(2k+1)a n﹣k.(1)求T2的值;(2)化简T n的表达式,并证明:对任意的n∈N*,T n都能被4n+2整除.参考答案一、填空题:共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.1.集合A={0,e x},B={﹣1,0,1},若A∪B=B,则x=0.【分析】推导出A⊆B,e x>0,从而e x=1,由此能求出结果.解:因为集合A={0,e x},B={﹣1,0,1},A∪B=B,所以A⊆B,又e x>0,所以e x=1,所以x=0.故答案为:0.2.已知复数z=(i是虚数单位)则z的虚部是﹣1.【分析】直接利用复数代数形式的乘除运算化简得答案.解:∵z==,∴复数z=的虚部是﹣1.故答案为:﹣1.3.log24+log42=.【分析】利用对数运算性质即可得出.解:原式=2+=2+=.故答案为:.4.执行如图所示的程序框图,输出的s值为.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量s的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:模拟程序的运行过程,可得:第一次运行:k=1时,,第二次运行:k=2时,,第三次运行:此时k=3满足k≥3,退出循环,输出,故答案为:.5.在△ABC中,a=4,b=5,c=6,则=1.【分析】利用余弦定理求出cos C,cos A,即可得出结论.解:∵△ABC中,a=4,b=5,c=6,∴cos C==,cos A==∴sin C=,sin A=,∴==1.故答案为:1.6.已知函数,0≤φ≤π.若f(x)是奇函数,则的值为﹣1.【分析】利用两角和的正弦公式化简f(x)的解析式,再根据三角函数的奇偶性,求出φ的值,可得函数的解析式,从而求得的值.解:∵函数=2sin(x+φ+),0≤φ≤π,若f(x)是奇函数,则φ=,∴f(x)=2sin(x+π)=﹣2sin x,则=﹣2sin=﹣1,故答案为:﹣1.7.已知f(x)=|log3x|,若a,b满足f(a﹣1)=f(2b﹣1),且a≠2b,则a+b的最小值为.【分析】若a,b满足f(a﹣1)=f(2b﹣1),且a≠2b,则(a﹣1)(2b﹣1)=1,则b=且a>1,即a+b=,构造函数,利用导数法,可得函数的最小值.解:∵f(x)=|log3x|,若a,b满足f(a﹣1)=f(2b﹣1),且a≠2b,则(a﹣1)(2b﹣1)=1,则b=且a﹣1>0,即a>1即a+b=a+=,由令g(a)=,则g′(a)=,令g′(a)=0,则a=1±,当a∈(1,1+)时,g′(a)<0,当a∈(1+,+∞)时,g′(a)>0,故当a=1+时,g(a)取最小值,故答案为:.8.将黑白2个小球随机放入编号为1,2,3的三个盒子中,则黑白两球均不在1号盒子的概率为【分析】基本事件总数n=3×3=9,黑白两球均不在1号盒子包含的基本事件总数m=2×2=4,由此能求出黑白两球均不在1号盒子的概率.解:将黑白2个小球随机放入编号为1,2,3的三个盒子中,基本事件总数n=3×3=9,黑白两球均不在1号盒子包含的基本事件总数m=2×2=4,∴黑白两球均不在1号盒子的概率为p==.故答案为:.9.若抛物线x2=4y的焦点到双曲线C:(a>0,b>0)的渐近线距离等于,则双曲线C的离心率为3.【分析】先求出抛物线x2=4y的焦点坐标为(0,1),和双曲线的一条渐近线方程为y =x,根据点到直线的距离公式和离心率公式即可求出.解:抛物线x2=4y的焦点坐标为(0,1),双曲线C:(a>0,b>0)的一条渐近线方程为y=x,∴==,∴e==3,故答案为:3.10.设m,n为空间两条不同的直线,α,β为空间两个不同的平面,给出下列命题:①若m∥α,m∥β,则α∥β;②若m⊥α,m∥β,则α⊥β;③若m∥α,m∥n,则n∥α;④若m⊥α,α∥β,则m⊥β.其中的正确命题序号是②④.【分析】在①中,α与β相交或平行;在②中,由面面垂直的判断定理得α⊥β;在③中,n∥α或n⊂α;在④中,由线面垂直的判定定理得m⊥β.解:由m,n为空间两条不同的直线,α,β为空间两个不同的平面,知:在①中,若m∥α,m∥β,则α与β相交或平行,故①错误;在②中,若m⊥α,m∥β,则由面面垂直的判断定理得α⊥β,故②正确;在③中,若m∥α,m∥n,则n∥α或n⊂α,故③错误;在④中,若m⊥α,α∥β,则由线面垂直的判定定理得m⊥β,故④正确.故答案为:②④.11.设x>0,y>0,向量=(1﹣x,4),=(x,﹣y),若∥,则x+y的最小值为9.【分析】先根据向量平行得到+=1,再利用基本不等式即可求出最值.解:因为∥,所以4x+(1﹣x)y=0,又x>0,y>0,所以+=1,故x+y=(+)(x+y)=5++≥9.当=,+=1同时成立,即x=3,y=6时,等号成立.(x+y)min=9.故答案为:9.12.在△ABC中,点P是边AB的中点,已知||=,||=4,∠ACB=,则•=6.【分析】用表示出,根据CP=计算CB,再计算•的值.解:∵点P是边AB的中点,∴=+,∴=++,∴3=4+×cos+||2,∴||=2,∴=4×2×cos=﹣4,∴•=(+)=+=6.故答案为:6.13.已知正数a,b,c满足b2+2(a+c)b﹣ac=0,则的最大值为.【分析】由b2+2(a+c)b﹣ac=0得(b+a+c)2=ac+(a+c)2≤+(a+c)2=(a+c)2再解关于b的不等式即可.解:由b2+2(a+c)b﹣ac=0得(b+a+c)2=ac+(a+c)2≤+(a+c)2=(a+c)2,∴b+a+c≤(a+c),∴b≤(a+c),∴≤,当且仅当a=c时取等.故答案为14.若(m≠0)对一切x≥4恒成立,则实数m的取值范围是(﹣∞,﹣).【分析】等价于(m2x﹣1)(mx+1)<0,m分﹣1<m<0,及m=﹣1两类讨论,利用函数的单调性即可求得答案.解:等价于(m2x﹣1)(mx+1)<0,x1=,x2=﹣,若(m≠0)对一切x≥4恒成立,则m<0,当﹣1≤m<0时,≥﹣,则<4,解得﹣1≤m<﹣,当m<﹣1时,<﹣,则﹣<4,解得m<﹣1.故答案为:(﹣∞,﹣).二、解答题:共6小题,共90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.如图,四棱锥P﹣ABCD的底面为矩形,AB=,BC=1,E,F分别是AB,PC的中点,DE⊥PA.(Ⅰ)求证:EF∥平面PAD;(Ⅱ)求证:平面PAC⊥平面PDE.【分析】(Ⅰ)连接EC,并延长与DA的延长线交于N,则E是AC的中点,可得EF ∥PA,即可证明EF∥平面PAD;(Ⅱ)证明DE⊥平面PAC,再证明平面PAC⊥平面PDE.【解答】证明:(Ⅰ)连接EC,并延长与DA的延长线交于N,则E是AB的中点,因为F是PC的中点,…所以EF∥PN,又EF⊄平面PAD,PN⊂平面PAD,故EF∥平面PAD.…(Ⅱ)设AC∩DE=G,由△AEG∽△CDG及E为AB中点得=,又因为AB=,BC=1,所以AC=,AG=AC=.所以,又∠BAC为公共角,所以△GAE∽△BAC.所以∠AGE=∠ABC=90°,即DE⊥AC.…又DE⊥PA,PA∩AC=A,所以DE⊥平面PAC.…又DE⊂平面PDE,所以平面PAC⊥面PDE.…16.在三角形ABC中,已知,.(1)求角A的值;(2)若△ABC的面积为,求边BC的长.【分析】(1)先根据已知条件求出tan C,再由tan A=﹣tan(B+C)求出tan A,从而求出角A;(2)设BC=a,利用正弦定理得求出AB,再利用tan B=求出sin B,所以△ABC的面积为:S===,所以a=1,即BC=1.解:(1)在△ABC中,tan B=,cos C=﹣,C∈(,π),∴sin C=,故tan C=﹣3,所以,∵0<A<π,所以A=;(2)由(1)知A=450,设BC=a,利用正弦定理:得:AB=,又,解得sin B=,所以△ABC的面积为:S====,所以a=1,即BC=1.17.建造一个容积为8m3、深为2m的无盖长方体形的水池,已知池底和池壁的造价分别为120元/m2和80元/m2.(1)求总造价y(单位:元)关于底边一边长x(单位:m)的函数解析式,并指出函数的定义域;(2)如果要求总造价不超过2080元,求x的取值范围;(3)求总造价y的最小值.【分析】(1)底边一边长x,则另一边长为,由题意可知y=320(x+)+480 (x >0);(2)令y≤2080即可求出x的取值范围;(3)利用基本不等式求得x+,当且仅当x=,即x=2时,等号成立,从而求出总造价y的最小值.解:(1)底边一边长x,则另一边长为,∴y=2(x+)×=320(x+)+480,∴总造价y关于底边一边长x的函数解析式为:y=320(x+)+480 (x>0);(2)由(1)可知:y=320(x+)+480,∴令y≤2080得,320(x+)+480≤2080,解得:1≤x≤4,∴当x∈[1,4]时,总造价不超过2080元;(3)∵x>0,∴x+,当且仅当x=,即x=2时,等号成立,∴y=320(x+)+480≥320×4+480=1760,∴当x=2时,总造价y的值最小,最小值为1760元.18.在直角坐标系xOy中,已知椭圆=1,若圆O:x2+y2=R2(R>O)的一条切线与椭圆C有两个交点A,B,且•=0.(1)求圆O的方程;(2)已知椭圆C的上顶点为M,点N在圆O上,直线MN与椭圆C相交于另一点Q,且=2,求直线MN的方程.【分析】(1)假设圆的切线,与椭圆联立,得出两根之和及两根之积,由数量积为零得圆的半径,即求出圆的方程;(2)设Q,N的坐标,在曲线上,写出坐标之间的关系,写出向量的坐标,利用它们的关系求出坐标,进而求出直线方程.解:(1)假设圆的切线的斜率存在时,设切线方程y=kx+b,设A(x,y),B(x',y').联立与椭圆的方程整理:(1+2k2)x2+4kbx+2b2﹣6=0,x+x'=,xx'=,∴yy'=k2xx'+kb(x+x')+b2=﹣+=,因为:=0,所以:xx'+yy'=0,∴可得2b2﹣6+b2﹣6k2=0,∴b2=2+2k2;①又与圆相切,所以=R,∴b2=R2(1+k2)②,由①②得,2+2k2=2k2R2+R2,∴R2=2,所以圆的方程x2+y2=2;(2)由题意得M(0,),设Q(m,n),N(a,b),=(a,b﹣),=(m﹣a,n﹣b),由题意得:,∴a=,b=;而又由题意:,解得:4n2﹣4﹣9=0,∴n=(舍),n=﹣,m=±,∴a=±,b=0,即N(±,0),所以直线MN的方程±=1,即直线MN的方程+﹣=0,﹣y+=0.19.已知函数.(1)若曲线y=f(x)在x=1处的切线的斜率为2,求函数f(x)的单调区间;(2)若函数f(x)在区间(1,e)上有零点,求实数a的取值范围.【分析】(1)求导,由导数的结合意义可求得a=0,进而得到函数解析式,再解关于导函数的不等式即可得到单调区间;(2)分类讨论,利用零点的存在性定理建立不等式即可求解.解:(1)函数f(x)的定义域为(0,+∞),,则f′(1)=2(a+1)=2,解得a=0,∴f(x)=2xlnx+1(x>0),f′(x)=2(lnx+1),令f′(x)>0,解得;令f′(x)<0,解得;∴函数f(x)的单调递减区间为,单调递增区间为;(2)函数在区间(1,e)上是一条不间断的曲线,由(1)知,f′(x)=2(ax+1)(lnx+1),①当a≥0时,对任意x∈(1,e),ax+1>0,lnx+1>0,则f′(x)>0,故函数f(x)在(1,e)上单调递增,此时对任意的x∈(1,e),都有成立,从而函数f(x)在区间(1,e)上无零点;②当a<0时,令f′(x)=0,解得或,其中,(i)若,即a≤﹣1,则对任意x∈(1,e),f′(x)<0,故函数f(x)在区间(1,e)上单调递减,由题意可得,解得,其中,即,故a的取值范围为﹣2<a≤﹣1;②若,即,则对任意x∈(1,e),f′(x)>0,所以函数f(x)在区间(1,e)上单调递增,此时对任意x∈(1,e),都有成立,从而函数f(x)在区间(1,e)上无零点;③若,即,则对任意,所以函数在区间上单调递增,对任意,函数f(x)在区间上单调递减,由题意可得,解得,其中,即,所以a的取值范围为,综上所述,实数a的取值范围为.20.已知数列{a n}、{b n}、{c n},对于给定的正整数k,记b n=a n﹣a n+k,c n=a n+a n+k(n∈N*).若对任意的正整数n满足:b n≤b n+1,且{c n}是等差数列,则称数列{a n}为“H(k)”数列.(1)若数列{a n}的前n项和为S n=n2,证明:{a n}为H(k)数列;(2)若数列{a n}为H(1)数列,且a1=1,b1=﹣1,c2=5,求数列{a n}的通项公式;(3)若数列{a n}为H(2)数列,证明:{a n}是等差数列.【分析】(1)直接利用定义法证明数列为H(k)数列.(2)利用赋值法和定义法进行证明,进一步求出数列的通项公式.(3)直接利用代换法和定义法证明数列为等差数列.【解答】证明:(1)当n≥2时,=2n﹣1.当n=1时,a1=S1=1符合上式,则:a n=2n﹣1所以:b n=a n﹣a n+k,整理得:b n=﹣2k,c n=a n+a n+k=4n﹣2k﹣2.则b n≤b n+1,c n+1﹣c n=4.对任意的正整数n满足b n≤b n+1,且数列{c n},是公差为4的等差数列,所以:数列{a n}为H(k)数列;(2)由于a1=1,b1=﹣1,c2=5,由数列{a n}为H(1)数列,则数列{c n}是等差数列,且c1=3,c2=5,所以:c n=2n+1.即a n+a n+1=2n+1所以:a n+1﹣(n+1)=a n﹣n,则{a n﹣n}是常数列所以:a1﹣1=0,则:a n=n.验证:b n=a n﹣a n﹣1=﹣1,所以:b n≤b n+1对任意正整数n都成立所以:a n=n.附:a n+a n+1=2n+1①,a n+1+a n+2=2n+3②,②﹣①得:a n+2﹣a n=2所以:a2k﹣1=a1+2(k﹣1)=2k﹣1.a2k=a2+2(k﹣1)=2k,所以:a n=n.证明:(3)由数列{a n}为H(2)数列可知:{c n}是等差数列,记公差为d c n+2﹣c n=(a n+2+a n+4)﹣(a n+a n+2)=﹣b n﹣b n+2=2d,所以:﹣b n+1﹣b n+3=2d.则:(b n﹣b n+1)+(b n+2﹣b n+3)=2d﹣2d=0又b n≤b n+1,所以:b n=b n+1,所以:数列{b n}为常数列,则b n=a n﹣a n+2=b1所以:c n=a n+a n+2=2a n﹣b1.由c n+1﹣c n=2(a n+1﹣a n)=d,所以:.所以:{a n}是等差数列.【选做题】本题包括A、B、C三小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换]21.已知矩阵A=,B=,且AB=BA.(1)求实数a;(2)求矩阵B的特征值.【分析】(1)AB=,BA=,进而求解;(2)矩阵B的特征多项式为f(λ)=(λ﹣2)(λ﹣1),令f(λ)=0,进而求解.解:(1)因为AB==,BA==,且AB=BA,所以a=0;(2)因为B=,矩阵B的特征多项式为f(λ)==(λ﹣2)(λ﹣1),令f(λ)=0,解得λ=2,λ=1.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,已知直线为参数).现以坐标原点O为极点,以x轴非负半轴为极轴建立极坐标系,设圆C的极坐标方程为ρ=2cosθ,直线l与圆C交于A,B两点,求弦AB的长.【分析】直线为参数)化为普通方程,圆C的极坐标方程ρ=2cosθ化为直角坐标方程,求出圆C的圆心到直线l的距离,即可求弦AB的长.解:直线为参数)化为普通方程为4x﹣3y=0,…圆C的极坐标方程ρ=2cosθ化为直角坐标方程为(x﹣1)2+y2=1,…则圆C的圆心到直线l的距离为,…所以.…[选修4-5:不等式选讲]23.已知x1,x2,x3∈(0,+∞),且满足x1+x2+x3=3x1x2x3,证明:x1x2+x2x3+x3x1≥3.【分析】依题意,,再利用柯西不等式即可得证.【解答】证明:∵x1+x2+x3=3x1x2x3,∴,∴,当且仅当“x1=x2=x3=1”时取等号,故x1x2+x2x3+x3x1≥3,即得证.【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.24.如图,在四棱锥P﹣ABCD中,已知棱AB,AD,AP两两垂直,长度分别为1,2,2.若=λ,且向量与夹角的余弦值为.(1)求实数λ的值;(2)求直线PB与平面PCD所成角的正弦值.【分析】(1)根据已知条件即可建立坐标系:以A为坐标原点,分别以边AB,AD,AP所在直线为x,y,z轴建立空间直角坐标系,然后即可根据已知条件求出点P,A,B,C,D点的坐标,利用向量与夹角的余弦值为求出λ的值.(2)求出平面PCD的法向量,利用向量夹角的余弦公式求解直线PB与平面PCD所成角的正弦值.解:以A为坐标原点,分别以AB,AD,AP为x,y,z轴建立如图所示空间直角坐标系;则:A(0,0,0),B(1,0,0),D(0,2,0),P(0,0,2);=λ,可得C (λ,2,0).(1)=(λ,2,﹣2),=(﹣1,2,0),向量与夹角的余弦值为.可得=,解得λ=10(舍去)或λ=2.实数λ的值为2.;(2)=(2,2,﹣2),=(0,2,﹣2),平面PCD的法向量=(x,y,z).则且,即:x+y﹣z=0,y﹣z=0,∴x=0,不妨去y=z=1,平面PCD的法向量=(0,1,1).又=(1,0,2).故cos==.直线PB与平面PCD所成角的正弦值为:.25.已知(1+x)2n+1=a0+a1x+a2x2+…+a2n+1x2n+1,n∈N*.记T n=(2k+1)a n﹣k.(1)求T2的值;(2)化简T n的表达式,并证明:对任意的n∈N*,T n都能被4n+2整除.【分析】(1)由二项式定理得a i=,利用公式计算T2的值;(2)由组合数公式化简T n,把T n化为(4n+2)的整数倍即可.解:由二项式定理,得a i=(i=0,1,2,…,2n+1);(1)T2=a2+3a1+5a0=+3+5=30;……(2)因为(n+1+k)=(n+1+k)•==(2n+1),……所以T n=(2k+1)a n﹣k=(2k+1)=(2k+1)=[2(n+1+k)﹣(2n+1)]=2(n+1+k)﹣(2n+1)=2(2n+1)﹣(2n+1)=2(2n+1)••(22n+)﹣(2n+1)••22n+1=(2n+1);……T n=(2n+1)=(2n+1)(+)=2(2n+1);因为∈N*,所以T n能被4n+2整除;……注意:只要得出T n=(2n+1),就给,不必要看过程.。