当前位置:文档之家› 普通化学知识点总结(完整版)

普通化学知识点总结(完整版)

普通化学复习资料3.1物质的结构与物质的状态3.1.1原子结构1.核外电子的运动特性核外电子运动具有能量量子化、波粒二象性和统计性的特征,不能用经典的牛顿力学来描述核外电子的运动状态。

2.核外电子的运动规律的描述由于微观粒子具有波的特性,所以在量子力学中用波函数Ψ来描述核外电子的运动状态,以代替经典力学中的原子轨道概念。

(1)波函数Ψ(原子轨道):用空间坐标来描写波的数学函数式,以表征原子中电子的运动状态。

一个确定的波函数Ψ,称为一个原子轨道。

(2)概率密度(几率密度):Ψ2表示微观粒子在空间某位置单位体积内出现的概率即概率密度。

(3)电子云:用黑点疏密的程度描述原子核外电子出现的概率密度(Ψ2)分布规律的图形。

黑点较密的地方,表示电子出现的概率密度较大,单位体积内电子出现的机会较多。

(4)四个量子数:波函数Ψ由n.l.m三个量子数决定,三个量子数取值相互制约:1)主量子数n的物理意义:n的取值:n=1,2,3,4……∞ ,意义:表示核外的电子层数并确定电子到核的平均距离;确定单电子原子的电子运动的能量。

n = 1,2,3,4, ……∞,对应于电子层K,L,M,N, ···具有相同n值的原子轨道称为处于同一电子层。

2)角量子数ι:ι的取值:受n的限制,ι= 0,1,2……n-1 (n个)。

意义:表示亚层,确定原子轨道的形状;对于多电子原子,与n共同确定原子轨道的能量。

…ι的取值: 1 , 2 , 3 , 4电子亚层:s, p, d, f……轨道形状:球形纺锤形梅花形复杂图3-13)磁量子数m:m的取值:受ι的限制, m=0 ,±1,±2……±ι(2ι+1个) 。

意义:确定原子轨道的空间取向。

ι=0, m=0, s轨道空间取向为1;ι=1, m=0 ,±1, p轨道空间取向为3;ι=2, m=0 ,±1,±2 , d轨道空间取向为5;……n ,ι相同的轨道称为等价轨道。

s 轨道有1个等价轨道,表示为:p 轨道有3个等价轨道,表示为:d 轨道有5个等价轨道,表示为:……一个原子轨道是指n 、ι、m 三种量子数都具有一定数值时的一个波函数Ψ(n,ι,m ),例如Ψ(1,0,0)代表基态氢原子的波函数。

n 、ι、m 取值合理才能确定一个存在的波函数,亦即确定电子运动的一个轨道。

n 、ι、m 的取值与波函数: n=1(1个), ι=0,m=0, Ψ(1,0,0)n=2(4个), ι={(2,1,-1)(2,1,1),(2,1,0),(2,0,0),,1,00,,10ψψψψ±==m mn=3(9个), ι={)2,2,3(),2,2,3()1,2,3()1,2,3()0,2,3()1,1,3(),1,1,3(),0,1,3()0,0,3(2,1,01,00,,,210-ψψ-ψψψ-ψψψψ±±=±==m m mn=4(16个)……波函数Ψ数目=n 2在一个确定的原子轨道下,电子自身还有两种不同的运动状态,这由m S 确定. 4)自旋量子数m s :m s 的取值:m s ={2121-+意义:代表电子自身两种不同的运动状态(习惯以顺、逆自旋两个方向形容这两种不同的运动状态,可用↑↑ 表示自旋平行,↑↓表示自旋反平行。

这样n 、ι、m 、m S 四个量子数确定电子的一个完整的运动状态,以Ψ(n,ι,m, m S )表示。

例:Ψ(1,0,0,+21),Ψ(1,0,0,-21) ,Ψ(2,1,1,+21) ,Ψ(2,1,1, -21) 等等。

3.原子核外电子分布三原则(1)泡利不相容原理:一个原子中不可能有四个量子数完全相同的两个电子.因为同一个轨道的电子,n 、ι、m 三个量子数已相同,第四个量子数m s ={2121-+必不相同 由此可得出:一个原子轨道中最多能容纳自旋方向相反的两个电子。

表示为:↑↓根据每层有n 2个轨道,每个轨道最多能容纳两个电子,由此可得出每一层电子的最大容量为2 n 2。

(2)最低能量原理:电子总是尽先占据能量最低的轨道。

电子依据轨道近似能级图由低到高依次排布。

轨道近似能级图为:7s……6s 4f 5d 6p 5s 4d 5p 4s 3d 4p 3s 3p 2s 2p 1s(3)洪特规则:在n 和ι值都相同的等价轨道中,电子总是尽可能分占各个轨道且自旋平行。

如2p 3:洪特规则特例:当电子的分布处于全充满、半充满或全空时,比较稳定。

全充满: p 6或d 10或f 14↑ ↑ ↑半充满: p 3或d 5或f 7全空: p 0或d 0或f 0例如, 24Cr 1S 22S 22P 63S 23P 63d 54S 1, 半充满比较稳定。

29Cu 1S 22S 22P 63S 23P 63d 104S 1, 全充满比较稳定。

(4)核外电子分布式:原子的核外 原子的 离子的核外 离子的电子分布式 外层电子分布式 电子分布式 外层电子分布式(价电子构型)Na 111s22s 22p 63s13s 1Na +:1s 22s 22p 62s 22p 6S161s 22s 22p 63s 23p43s 23p4S 2-:1s 22s 22p 63s 23p 63s 23p 6Fe261s 22s 22p 63s 23p 63d 64S23d 64s2Fe 3+:1s 22s 22p 63s 23p 63d53s 23p 63d524Cr 1S 22S 22P 63S 23P 63d 54S 1 3d 54S 1 24Cr 3+:1S 22S 22P 63S 23P 63d33S 23P 63d 329Cu 1S 22S 22P 63S 23P 63d 104S 13d 104S 129Cu2+:1S 22S 22P 63S 23P 63d93S 23P 63d 9根据电子的排布,还可判断出轨道中未成对电子的数目。

例:根据Fe 原子的价电子构型3d 64s2,判断其轨道图中,未配对的电子数。

3d 64s 2可见未成对电子数为 4。

(3)原子、离子的电子式及分子结构式电子式:在元素符号周围用小黑点(或×)来表示原子或离子的最外层电子的式子。

例如:H. Na. .Mg. .Ca. :C:分子结构式:用“—”代表一对共用电子对的分子式。

例如:N ≡N ,O=C=O ,Cl-Cl ,H —Cl3.1.4气体定律1.理想气体状态方程 PV = nRT式中 P: 压力, Pa;( 1 atm = 1.01×105Pa ; 1 atm = 760毫米汞柱)V: 体积, m 3;(1 m 3=103L) T: 绝对温度, K ; n: 摩尔数, mol;R: 气体常数, R =8.314JK -1mol -1注意:若压力单位为“kPa ”,体积单位对应使用升“L ”.↑ ↑ ↑ ↑ ↑↑↓⑴当n 一定时,P 、V 、T 变则有 222111T V P T VP =⑵n,T 一定时,P 1V 1=P 2V 2 ⑶n,P 一定时,2112T V T V =⑷T ,P 一定时,2121V V n n =⑸PV =RT Mm ,ρ=Vm ,P =RT Mρ,M =PRT PVmRT ρ=式中m: 质量 ,克;M: 摩尔质量, g/mol ; ρ:气体密度,g/ m 3;实际气体在高温低压下,接近理想气体。

例1:已知在1.0×105Pa ,27OC 时,0.6克的某气体占0.5升,试求此气体的分子量.解: m=0.6g ,T =273+27=300K ,V=0.5升=0.5×10-3m 3, 据理想气体状态方程M =mol g PVmRT /93.29105.0100.1300314.86.035=⨯⨯⨯⨯⨯=- 例2.已知10 OC 时,水的蒸汽压为1.227kPa,在10 OC 、101。

3 kPa 下,于水面上收集到1.5L 某气体,则该气体的物质量为多少mol? 解:)(1038.6)10273(314.85.1)227.133.101(2mol RT PV n -⨯=+⨯⨯-==2.分压定律⑴分压:气体混合物中每一种气体的压力,等于该气体单独占有与混合气体相同体积时所产生的压力。

⑵道尔顿分压定律:适于各组分互不反应的理想气体。

1)气体混合物总压力等于混合物中各组分气体分压的总和。

P 总=P A +P B +……2)混合气体中某组分气体的分压,等于总压力乘以该组分气体的摩尔分数。

P i =总总P n n i =χi P总总总=V Vn n i i P A =总总P V V i分压定律可用来计算混合气体中组份气体的分压、摩尔数或在给定条件下的体积。

例:有一混合气体(N 2、CO 2、O 2)其总压力为101.325kPa ,此气体的组成为:N 225%、CO 215%、O 260%(体积百分比),试计算混合气体中各组分的分压。

解:P N2 =P总×摩尔分数=P总×体积分数=101.325×25%=25.33kPa ;P CO2 = 101.325×15%=15.20kPa ; P O2 = 101.325×60%=60.80kPa ;3.2.1溶液浓度 1.质量分数(%)=100)( g g 溶液的质量)溶质的质量(% 2.物质的量浓度(C)=)溶液的体积()溶质的物质的量(3dm mol ,mol.dm -33.质量摩尔浓度(m)=)溶剂的质量()溶质的物质的量(kg mol ,mol.kg -14.摩尔分数(x)=)()mol mol mol 溶剂的物质的量溶质的物质的量()的量(溶质(或溶剂)的物质+ 3.2.2稀溶液的通性 1.溶液的蒸汽压下降(1)蒸汽压(饱和蒸汽压)P 0:在一定温度下,液体和它的蒸汽处于平衡时,蒸汽所具有的压力。

试验现象: 一封闭钟罩中放一杯纯水A 和一杯糖水B ,静止足够长时间发现,A 杯变成空杯,B 杯中水满后溢出。

此试验证明:溶液的蒸汽压总是低于纯溶剂的蒸汽压,其差值称为溶液的蒸汽压下降(ΔP )。

2)拉乌尔定律:在一定温度下,难挥发的非电解质稀溶液的蒸汽压下降(ΔP )和溶质(B )的摩尔分数成正比。

ΔP=0P n n n BA B+ (2)溶液的的沸点上升和凝固点下降1)沸点:液相的蒸汽压等于外界压力时的温度。

2)凝固点:液向蒸汽压和固相蒸汽压相等时的温度。

3)汽化热:恒温恒压下,液态物质吸热汽化成气态,所吸收的热量称为汽化热。

试验证明:溶液的沸点总是高于纯溶剂的沸点;溶液的凝固点总是低于纯溶剂的凝固点。

相关主题