当前位置:
文档之家› 第一章 纳米材料的物理学基础
第一章 纳米材料的物理学基础
材料学院
第一章 纳米材料的物理学基础
费米能级附近的电子能级
当材料尺寸小到一定程度时,能带理论就不适用了, 在纳米颗粒中原子个数是有限的, 此时能级之间的 间隔就不容忽视,表现为电子能级由晶体中准连续分 布过渡到纳米颗粒中的不连续分布.
材料学院
C. N. R. Rao, et al., Chem. Soc. Rev., 2000, 29, 27–35
第一章 纳米材料的物理学基础
久保理论
❖久保理论是针对金属超微粒费米面附近电子能
级状态分布而提出来的
❖ 电子能级的间隙与微粒粒径的关系:
材料学院
4 EF V 1
3N
式中N为个超微粒的总导电电子数(N= nl×V),V为超微粒 体积,EF为费米能级,它可以用下式表示:
EF
h2 2m
(3
TiO2: 1240/3.2~387 nm 1-4 各种化合物半导体的能带图
第一章 纳米材料的物理学基础
材料学院
CdS:1240/2.4~517 1-4 各种化合物半导体的能带图
第一章 纳米材料的物理学基础
材料学院
CuInS2:1240/1.5=826(nm) 1-4 各种化合物半导体的能带图
第一章 纳米材料的物理学基础
kBT减小; W≈e2/d,因为d减小,所以W增大。当δ>kBT时, 能带的离散性不可忽视。
材料学院
第一章 纳米材料的物理学基础
久保理论的两点假设
1. 简并电子气体 将纳米微粒子视为准粒子,其靠近费米面附近的电子态假 设为是受尺寸限制的简并电子气,其电子能级不连续
2. 纳米微粒子电中性 久保认为通过热的涨落从一个纳米微粒子取走或放入一个 电子都十分困难:
图1-1氢分子能级分裂
材料学院
图1-2 能级分裂和能带形成
第一章 纳米材料的物理学基础
原子的能级与晶体的能带
能带理论
❖ 能带:组成晶体的大量原子在某一能级上的电子 本来都具有相同的能量,现在它们由于处于共有 化状态而具有各自不尽相同的能量。因为它们在 晶体中不仅仅受本身原子势场的作用,而且还受 到周围其它原子势场的作用。这样,晶体中所有 原子原来的每一个相同能级就会分裂而形成了有 一定宽度的能带。
材料学院
图1-3 绝缘体、半导体、导体的能带
第一章 纳米材料的物理学基础
两种载流子: 以硅晶体为例, Si原子有4个价电子, 分别与相邻的4个原子形成共价键。由于共价键上的 电子所受束缚力较小,当温度高于绝对零度或受光 照时,价带中的电子吸收能量跃过禁带到达导带, 而成为自由电子,并在价带中留下等量的空穴。自 由电子和空穴可在外加电场作用下定向运动,形成 电流。
❖ 讨论零维金属纳米颗粒的能级分裂和量子尺寸效 应,最后介绍金属颗粒能级分布的久保理论
材料学院
第一章 纳米材料的物理学基础
1
原子的能级与晶体的能带
2 导体、半导体、绝缘体的能带
3
电子能级的不连续性
4
量子尺寸效应
5
久保理论
材料学院
第一章 纳米材料的物理学基础
1. 原子能级分裂与能带
晶体中电子能带的形成
材料学院
1-5 金属钠的能带形成图
第一章 纳米材料的物理学基础
这样,在金属钠晶体中,由于3s原子轨道之间的相互作 用,3s轨道的能级会发生分裂,形成3s能带。对于1mol Na 金属,在3s能带中有NA(阿佛加德罗常数)个分子轨道,按泡 利不相容原理可容纳2NA个电子。而1mol Na金属只有NA个 电子,只能充满3s能带中能级较低的一半分子轨道,其他一 半是空的。
δ>kBT
4 EF
3N
EF
h2 (3 2n)3 / 2
2m
N=nV
2 2 2 Vm(3 2n)1/3
kB (1.45 10 18 ) /V (Kcm3 )
以纳米Ag颗粒为例,计算在T=1K时出现量子尺寸效应的临界粒径 (已知:Ag的电子密度n=6×1022/cm3)。
P型半导体 例如,四价硅晶体中掺入三价原子硼(B),就可 以构成P型半导体。硼原子的三个电子与周围硅原子要组成共 价键,尚缺少一个电子。于是,它很容易从硅晶体中获取一个
电子而形成稳定结构,这就使硼原子变成负离子而在硅晶体中 出现空穴。P型半导体将以空穴导电为主,空穴为多数载流子 (简称多子),而自由电子为少数载流子(简称少子)。
材料学院
1-4 各种化合物半导体的能带图
第一章 纳米材料的物理学基础
金属钠Na的原子外电子轨道
❖ Na ❖1s2, 2s2, 2p6, 3s1
材料学院
第一章 纳米材料的物理学基础
金属Na 3S能带形成示意图
如果两个钠原子形成Na2分子,按照分子轨道理论,若不考虑内层电子,两个3s 原子轨道可组合形成两个分子轨道:一个能量较低的成键分子轨道和一个能量较 高的反键分子轨道。当原子数增加到很大数目n时,由此组合的相应的分子轨道 数也很大,这些分子轨道的能级之间相差极小,几乎连成一片,形成了具有一定 上限和下限的能带。对于块体而言,能级总数是非常多的(但并非无限多),通 常情况下,可以看作是准连续的,称为能带。
费米能级
就一个由费米子(电子、质子、中子 )组成的微观体系而言,每 个费米子都处在各自的量子能态上。
现在假想把所有的费米子从这些量子态上移开。之后再把这些费米 子按照一定的规则(例如泡利原理等)填充在各个可供占据的量子能 态上,并且这种填充过程中每个费米子都占据 最低的可供占据的量子 态
最后一个费米子占据着的量子态 即可粗略理解为费米能级。
材料学院
第一章 纳米材料的物理学基础
N型半导体 例如,四价硅(Si)组成的晶体中掺入五价原子磷 (P),就可以构成N型半导体。五价的磷用四个价电子与周围的 硅原子组成共价键,尚多余一个电子。这个电子受到的束缚力
比共价键上的电子要小得多,很容易被磷原子释放,跃迁成为 自由电子。N型半导体将以自由电子导电为主,自由电子为多 数载流子(简称多子),而空穴为少数载流子(简称少子)。
材料学院
第一章 纳米材料的物理学基础
量子尺寸效应主要影响
1. 导体向绝缘体的转变
2. 吸收光谱的蓝移
3. 纳米材料的磁化率(磁矩的大小和颗粒中电子是 奇数还是偶数有关)
4. 纳米颗粒的发光现象
材料学院
第一章 纳米材料的物理学基础
此时,3s能带是未满的能带,简称未满带。
材料学院
第一章 纳米材料的物理学基础
图1-6
金属晶体中存在这种未满的能带是金属能导电的根本原因。未满带中 的电子在外界电场影响下,并不需要消耗多少能量即能跃入该未满带的 空的分子轨道中去,使金属具有导电性。
镁的3s能带是全充满的,如图(a)右图,这种能带叫做满带。满带中 没有空轨道,似乎不能导电。但镁的3s能带和3p能带发生部分重叠,3p 能带原应是一个没有电子占据的空带,然而有部分3s能带中的电子实际上 也进入3p能带。一个满带和一个空带相互重叠的结果好像连接成一个范 围较大的未满带一样,所以镁和其他碱土金属都是良导体。
这种能参与导电的自由电子和空穴统称为载流子。 当温度高于绝对零度或受光照时,电子吸收能量摆 脱共价键而形成电子-空穴对的过程,称为本征激 发。
材料学院
第一章 纳米材料的物理学基础
本征半导体: 结构完整、纯净的半导体称为 本征半导体,又称I型半导体,例如,纯净的硅 称为本征硅。
非本征半导体: 半导体中可掺入少量杂质形 成杂质半导体,通常称它为非本征半导体。 非本征半导体包括N型半导体和P型半导体。
材料学院
第一章 纳米材料的物理学基础
费米面(Fermi surface)
❖ 绝对零度下,电子在波矢空间(K空间)中分布(填充) 而形成的体积的表面。
❖ 由于在绝对零度时电子都按照泡利不相容原理填满于费米 面以下的量子化状态中,所以费米面也就是k空间中费米 能量所构成的表面。
❖ 实际晶体的能带结构十分复杂,相应的费米面形状也很复 杂,最简单的情况是理想费米球的费米面,它是一个以kf 为半径的球面;成为“费米球”,测量金属费米面的实验 技术有磁阻效应、回旋共振、反常集赙效应等。
2
n1
)3
/
2
n1为电子密度,m为电子质量
第一章 纳米材料的物理学基础
❖当粒子为球形时:
1
d3
即随着粒径的减小,能级间隔增大。
材料学院
第一章 纳米材料的物理学基础
❖ 根据固体物理理论,在温度T时,只有EF附近大致为kBT能 量范围内的电子会受到热的激发,激发能≈ kBT。
❖ kB为波尔兹曼常数, kB=1.3806×10-23J·K-1
δ
EF
实际上,只有费米能级附近的能级对物理性质起重要作用
材料学院
第一章 纳米材料的物理学基础
❖ 对于只含少量原子的纳米金属颗 粒来说,在低温下能带的离散性 (不连续性)会凸现出来。
能级的间隙
δ
EF
低温时通过热的涨落从一个纳米微粒子取走或放入一个电 子都十分困难:热激发能kBT < 从一个纳米微粒子取走一个 电子所做的功(W≈e2/d)。
❖价带: 与价电子(最外层电子)能级相对应的能带 称为价带Ev(Valence Band)。
❖导带: 价带以上能量最低的能带称为导带Ec (Conduction Band)。
材料学院
第一章 纳米材料的物理学基础
导体、半导体、绝缘体的能带
禁带: 导带底与价带顶之间的能量间隔称为禁带 Eg(Forbidden Band)。
当T=1K时,d=14nm。Ag粒子d<14nm时即出现离散,由导体变 为绝缘体。
材料学院
第一章 纳米材料的物理学基础
半导体CdS的吸收谱