当前位置:文档之家› 高三数学一模试卷理(含解析)

高三数学一模试卷理(含解析)

2016年河南省焦作市高考数学一模试卷(理科)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A={x|﹣1<x<2},B={x|2x2﹣5x﹣3>0},则A∩B=()A.{x|﹣1<x<﹣,或2<x<3} B.{x|2<x<3}C.{x|﹣<x<2} D.{x|﹣1<x<﹣}2.若复数z满足z(1+i)=|1+i|,则在复平面内z的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.设向量=(2,0),=(1,1),则下列结论中不正确的是()A.||=|2| B.•=2 C.﹣与垂直 D.∥4.执行如图所示的程序框图,输出的S值为﹣4时,则输入的S0的值为()A.7 B.8 C.9 D.105.已知双曲线的一条渐近线方程是,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为()A.B.C.D.6.若函数y=a|x|(a>0,且a≠1)的值域为{y|0<y≤1},则函数y=log a|x|的图象是()A.B.C.D.7.已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=()A.﹣2 B.0 C.1 D.88.已知函数f(x)=sinx+acosx的图象的一条对称轴为x=.则函数f(x)的单调递增区间为()A.[2kπ﹣,2kπ+](k∈Z)B.[2kπ﹣,2kπ+](k∈Z)C.[2kπ﹣,2kπ+](k∈Z)D.[2kπ﹣,2kπ+](k∈Z)9.已知数列{a n}满足a1=1,a2=2,a n+2﹣a n=3,则当n为偶数时,数列{a n}的前n项和S n=()A.﹣B. +C.D.10.某几何体的三视图如图所示,其中俯视图为扇形,则一个质点从扇形的圆心起始,绕几何体的侧面运动一周回到起点,其最短路径为()A.4+B.6 C.4+D.611.已知椭圆(a>b>0),P为椭圆上与长轴端点不重合的一点,F1,F2分别为椭圆的左、右焦点,过F2作∠F1PF2外角平分线的垂线,垂足为Q,若|OQ|=2b,椭圆的离心率为e,则的最小值为()A.B.C.D.112.已知定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2),当x∈[0,2)时,f(x)=﹣2x2+4x.设f(x)在[2n﹣2,2n)上的最大值为a n(n∈N*),且{a n}的前n项和为S n,则S n=()A.B.C.D.二、填空题(本大题共4个小题,每小题5分,共20分).请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.13.直线x﹣y+2=0与圆x2+y2=4相交于A、B两点,则|AB|= .14.若实数x,y满足,则z=|x+2y﹣3|的最小值为.15.著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:可以转化为平面上点M(x,y)与点N(a,b)的距离.结合上述观点,可得f(x)=+的最小值为.16.在三棱锥S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,二面角S﹣AC﹣B的余弦值是,若S、A、B、C都在同一球面上,则该球的表面积是.三、解答题(本大题共5小题,满分60分)解答下列各题应在答题纸的相应编号的规定区域内写出必要的步骤.17.已知a,b,c分别为锐角△ABC三个内角A,B,C的对边,且(a+b)(sinA﹣sinB)=(c﹣b)sinC(Ⅰ)求∠A的大小;(Ⅱ)若f(x)=,求f(B)的取值范围.18.在市高三学业水平测试中,某校老师为了了解所教两个班100名学生的数学得分情况,按成绩分成六组:[80,90),[90,100),[100,110),[110,120),[120,130),[130,140)统计数据如下:分数段[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)人数 2 8 30 30 20 10(Ⅰ)请根据上表中的数据,完成频率分布直方图,并估算这100学生的数学平均成绩;(Ⅱ)该教师决定在[110,120),[120,130),[130,140)这三组中用分层抽样抽取6名学生进行调研,然后再从这6名学生中随机抽取2名学生进行谈话,记这2名学生中有ξ名学生在[120,130)内,求ξ的分布列和数学期望.19.如图所示,平面四边形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AD⊥ED,AF ∥DE,AB∥CD,CD=2AB=2AD=2ED=xAF.(Ⅰ)若四点F、B、C、E共面,AB=a,求x的值;(Ⅱ)求证:平面CBE⊥平面EDB;(Ⅲ)当x=2时,求二面角F﹣EB﹣C的大小.20.已知抛物线C:y2=2px(p>0),定点M(2,0),以O为圆心,抛物线C的准线与以|OM|为半径的圆所交的弦长为2.(Ⅰ)求抛物线C的方程;(Ⅱ)若直线y=﹣x+m(m∈R)与抛物线交于不同的两点A、B,则抛物线上是否存在定点P (x0,y0),使得直线PA,PB关于x=x0对称.若存在,求出P点坐标,若不存在,请说明理由.21.已知函数f(x)=x2+ax﹣lnx.(Ⅰ)求f(x)的单调区间;(Ⅱ)设g(x)=f(x)+2lnx,F(x)=3g(x)﹣2xg′(x),若函数F(x)在定义域内有两个零点x1,x2,且x1<x2,求证:<0.请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时.用2B铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-1:几何证明选讲]22.如图所示,已知PA是⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E 点,F为CE上一点,且DE2=EF•EC.(Ⅰ)求证:A、P、D、F四点共圆;(Ⅱ)若AE•ED=12,DE=EB=3,求PA的长.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+)=a,曲线C2的参数方程为,(θ为参数,0≤θ≤π).(Ⅰ)求C1的直角坐标方程;(Ⅱ)当C1与C2有两个公共点时,求实数a的取值范围.[选修4-5:不等式选讲]24.已知a>0,b>0,c>0,函数f(x)=|x+a|+|x﹣b|+c的最小值为4.(1)求a+b+c的值;(2)求a2+b2+c2的最小值.2016年河南省焦作市高考数学一模试卷(理科)参考答案与试题解析一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A={x|﹣1<x<2},B={x|2x2﹣5x﹣3>0},则A∩B=()A.{x|﹣1<x<﹣,或2<x<3} B.{x|2<x<3}C.{x|﹣<x<2} D.{x|﹣1<x<﹣}【考点】交集及其运算.【分析】求出B中不等式的解集确定出B,找出A与B的交集即可.【解答】解:由B中不等式变形得:(2x+1)(x﹣3)>0,解得:x<﹣或x>3,即B={x|x<﹣或x>3},∵A={x|﹣1<x<2},∴A∩B={x|﹣1<x<﹣},故选:D.2.若复数z满足z(1+i)=|1+i|,则在复平面内z的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【分析】利用复数的代数形式混合运算化简求出复数,得到复数对应点的坐标,即可得到结果.【解答】解:复数z满足z(1+i)=|1+i|=2,可得z==1﹣i,复数对应点为(1,﹣1),在复平面内z的共轭复数对应的点(1,1).故选:A.3.设向量=(2,0),=(1,1),则下列结论中不正确的是()A.||=|2| B.•=2 C.﹣与垂直 D.∥【考点】平面向量的坐标运算.【分析】根据平面向量的坐标表示与运算,对选项中的命题进行分析判断即可.【解答】解:∵向量=(2,0),=(1,1),∴||=2,||===2,||=||,A正确;•=2×1+0×1=2,B正确;(﹣)•=(1,﹣1)•(1,1)=1×1﹣1×1=0,∴(﹣)⊥,C正确;2×1﹣0×1≠0,∴∥不成立,D错误.故选:D.4.执行如图所示的程序框图,输出的S值为﹣4时,则输入的S0的值为()A.7 B.8 C.9 D.10【考点】程序框图.【分析】根据程序框图,知当i=4时,输出S,写出前三次循环得到输出的S,列出方程求出S0的值.【解答】解:根据程序框图,知当i=4时,输出S,∵第一次循环得到:S=S0﹣1,i=2;第二次循环得到:S=S0﹣1﹣4,i=3;第三次循环得到:S=S0﹣1﹣4﹣9,i=4;∴S0﹣1﹣4﹣9=﹣4,解得S0=10故选:D.5.已知双曲线的一条渐近线方程是,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为()A.B.C.D.【考点】双曲线的标准方程.【分析】由抛物线标准方程易得其准线方程为x=﹣6,而通过双曲线的标准方程可见其焦点在x轴上,则双曲线的左焦点为(﹣6,0),此时由双曲线的性质a2+b2=c2可得a、b的一个方程;再根据焦点在x轴上的双曲线的渐近线方程为y=±x,可得=,则得a、b的另一个方程.那么只需解a、b的方程组,问题即可解决.【解答】解:因为抛物线y2=24x的准线方程为x=﹣6,则由题意知,点F(﹣6,0)是双曲线的左焦点,所以a2+b2=c2=36,又双曲线的一条渐近线方程是y=x,所以,解得a2=9,b2=27,所以双曲线的方程为.故选B.6.若函数y=a|x|(a>0,且a≠1)的值域为{y|0<y≤1},则函数y=log a|x|的图象是()A.B.C.D.【考点】函数的图象;指数函数的图象变换.【分析】根据指数函数的图象和性质求出0<a<1,利用对数函数的图象和性质进行判断即可.【解答】解:∵|x|≥0,∴若函数y=a|x|(a>0,且a≠1)的值域为{y|0<y≤1},∴0<a<1,当x>0时,数y=log a|x|=log a x,为减函数,当x<0时,数y=log a|x|=log a(﹣x),为增函数,且函数是偶函数,关于y轴对称,故选:A7.已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=()A.﹣2 B.0 C.1 D.8【考点】利用导数研究曲线上某点切线方程.【分析】求出y=x+lnx的导数,求得切线的斜率,可得切线方程,再由于切线与曲线y=ax2+(a+2)x+1相切,有且只有一切点,进而可联立切线与曲线方程,根据△=0得到a的值.【解答】解:y=x+lnx的导数为y′=1+,曲线y=x+lnx在x=1处的切线斜率为k=2,则曲线y=x+lnx在x=1处的切线方程为y﹣1=2x﹣2,即y=2x﹣1.由于切线与曲线y=ax2+(a+2)x+1相切,y=ax2+(a+2)x+1可联立y=2x﹣1,得ax2+ax+2=0,又a≠0,两线相切有一切点,所以有△=a2﹣8a=0,解得a=8.故选D.8.已知函数f(x)=sinx+acosx的图象的一条对称轴为x=.则函数f(x)的单调递增区间为()A.[2kπ﹣,2kπ+](k∈Z)B.[2kπ﹣,2kπ+](k∈Z)C.[2kπ﹣,2kπ+](k∈Z)D.[2kπ﹣,2kπ+](k∈Z)【考点】正弦函数的对称性;正弦函数的单调性.【分析】由题意知函数f(x)=sinx+acosx在x=处取得最值,从而可得(•+a)2=3+a2,从而解出f(x)=sinx+cosx=2sin(x+),从而确定单调增区间.【解答】解:∵函数f(x)=sinx+acosx的图象的一条对称轴为x=,∴函数f(x)=sinx+acosx在x=处取得最值;∴(•+a)2=3+a2,解得,a=1;故f(x)=sinx+cosx=2sin(x+),故2kπ﹣≤x+≤2kπ+,k∈Z,故2kπ﹣≤x≤2kπ+,k∈Z,故选:C.9.已知数列{a n}满足a1=1,a2=2,a n+2﹣a n=3,则当n为偶数时,数列{a n}的前n项和S n=()A.﹣B. +C.D.【考点】等差数列的前n项和.【分析】数列{a n}满足a1=1,a2=2,a n+2﹣a n=3,可知:此数列的奇数项与偶数项分别成等差数列,公差都为3,利用等差数列的通项公式及其前n项和公式即可得出.【解答】解:数列{a n}满足a1=1,a2=2,a n+2﹣a n=3,可知:此数列的奇数项与偶数项分别成等差数列,公差都为3,且a2k﹣1=1+3(k﹣1)=3k﹣2,a2k=2+3(k﹣1)=3k﹣1.则当n为偶数时,设2k=n,数列{a n}的前n项和S n=+=3k2=.故选:C.10.某几何体的三视图如图所示,其中俯视图为扇形,则一个质点从扇形的圆心起始,绕几何体的侧面运动一周回到起点,其最短路径为()A.4+B.6 C.4+D.6【考点】由三视图求面积、体积.【分析】作出几何体侧面展开图,将问题转化为平面上的最短问题解决.【解答】解:由三视图可知几何体为圆锥的一部分,圆锥的底面半径为2,几何体底面圆心角为120°,∴几何体底面弧长为=.圆锥高为2.∴圆锥的母线长为.作出几何体的侧面展开图如图所示:其中,AB=AB′=2,AB⊥BC,AB′⊥B′D,B′D=BC=2,AC=AD=4,.∴∠BAC=∠B′AD=30°,∠CAD=.∴∠BAB′=120°.∴BB′==6.故选D.11.已知椭圆(a>b>0),P为椭圆上与长轴端点不重合的一点,F1,F2分别为椭圆的左、右焦点,过F2作∠F1PF2外角平分线的垂线,垂足为Q,若|OQ|=2b,椭圆的离心率为e,则的最小值为()A.B.C.D.1【考点】椭圆的简单性质.【分析】由题意画出图形,利用转化思想方法求得OQ=a,又OQ=2b,得a=2b,进一步得到a,e与b的关系,然后利用基本不等式求得的最小值.【解答】解:如图,由题意,P是以F1,F2为焦点的椭圆上一点,过焦点F2作∠F1PF2外角平分线的垂线,垂足为Q,延长F2Q交F1P延长线于M,得PM=PF2,由椭圆的定义知PF1+PF2=2a,故有PF1+PM=MF1=2a,连接OQ,知OQ是三角形F1F2M的中位线,∴OQ=a,又OQ=2b,∴a=2b,则a2=4b2=4(a2﹣c2),即c2=a2,∴===2b+≥2=.当且仅当2b=,即b=时,有最小值为.故选:C.12.已知定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2),当x∈[0,2)时,f(x)=﹣2x2+4x.设f(x)在[2n﹣2,2n)上的最大值为a n(n∈N*),且{a n}的前n项和为S n,则S n=()A.B.C.D.【考点】数列与函数的综合.【分析】根据定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2),可得f(x+2)=f (x),从而f(x+2n)=f(x),利用当x∈[0,2)时,f(x)=﹣2x2+4x,可求(x)在[2n﹣2,2n)上的解析式,从而可得f(x)在[2n﹣2,2n)上的最大值为a n,进而利用等比数列的求和公式,即可求得{a n}的前n项和为S n.【解答】解:∵定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2),∴f(x+2)=f(x),∴f(x+4)=f(x+2)=f(x),f(x+6)=f(x+4)=f(x),…f(x+2n)=f(x)设x∈[2n﹣2,2n),则x﹣(2n﹣2)∈[0,2)∵当x∈[0,2)时,f(x)=﹣2x2+4x.∴f[x﹣(2n﹣2)]=﹣2[(x﹣(2n﹣2)]2+4[x﹣(2n﹣2)].∴=﹣2(x﹣2n+1)2+2∴f(x)=21﹣n[﹣2(x﹣2n+1)2+2],x∈[2n﹣2,2n),∴x=2n﹣1时,f(x)的最大值为22﹣n∴a n=22﹣n∴{a n}表示以2为首项,为公比的等比数列∴{a n}的前n项和为S n==故选B.二、填空题(本大题共4个小题,每小题5分,共20分).请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.13.直线x﹣y+2=0与圆x2+y2=4相交于A、B两点,则|AB|= 2.【考点】直线与圆的位置关系.【分析】利用点到直线的距离公式求出圆心(0,0)到直线x﹣y+2=0的距离d,再由弦长公式可得弦长.【解答】解:圆心(0,0)到直线x﹣y+2=0的距离d==1,半径r=2,故|AB|=2=2,故答案为:2.14.若实数x,y满足,则z=|x+2y﹣3|的最小值为 1 .【考点】简单线性规划.【分析】由约束条件作出可行域,令t=x+2y﹣3,化为直线方程的斜截式,利用线性规划知识求出t的范围,取绝对值得答案.【解答】解:由约束条件作出可行域如图,令t=x+2y﹣3,则,由图可知,当直线过O时,直线在y轴上的截距最小,t有最小值为﹣3;直线过A时,直线在y轴上的截距最大,t有最大值为﹣1.∴z=|x+2y﹣3|的最小值为1.故答案为:1.15.著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:可以转化为平面上点M(x,y)与点N(a,b)的距离.结合上述观点,可得f(x)=+的最小值为5.【考点】类比推理.【分析】f(x)=+=,表示平面上点M(x,0)与点N(﹣2,4),O(﹣1,﹣3)的距离和,利用两点间的距离公式,即可得出结论.【解答】解:f(x)=+=,表示平面上点M(x,0)与点N(﹣2,4),O(﹣1,﹣3)的距离和,∴f(x)=+的最小值为=5.故答案为:5.16.在三棱锥S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,二面角S﹣AC﹣B的余弦值是,若S、A、B、C都在同一球面上,则该球的表面积是6π.【考点】与二面角有关的立体几何综合题;球的体积和表面积;球内接多面体.【分析】审题后,二面角S﹣AC﹣B的余弦值是是重要条件,根据定义,先作出它的平面角,如图所示.进一步分析此三棱锥的结构特征,找出其外接球半径的几何或数量表示,再进行计算.【解答】解:如图所示:取AC中点D,连接SD,BD,则由AB=BC,SA=SC得出SD⊥AC,BD⊥AC,∴∠SDB为S﹣AC﹣B的平面角,且AC⊥面SBD.由题意:AB⊥BC,AB=BC=,易得:△ABC为等腰直角三角形,且AC=2,又∵BD⊥AC,故BD=AD=AC,在△SBD中,BD===1,在△SAC中,SD2=SA2﹣AD2=22﹣12=3,在△SBD中,由余弦定理得SB2=SD2+BD2﹣2SD•BDcos∠SDB=3+1﹣2×=2,满足SB2=SD2﹣BD2,∴∠SBD=90°,SB⊥BD,又SB⊥AC,BD∩AC=D,∴SB⊥面ABC.以SB,BA,BC为顶点可以补成一个棱长为的正方体,S、A、B、C都在正方体的外接球上,正方体的对角线为球的一条直径,所以2R=,R=,球的表面积S=4=6π.故答案为:6π.三、解答题(本大题共5小题,满分60分)解答下列各题应在答题纸的相应编号的规定区域内写出必要的步骤.17.已知a,b,c分别为锐角△ABC三个内角A,B,C的对边,且(a+b)(sinA﹣sinB)=(c﹣b)sinC(Ⅰ)求∠A的大小;(Ⅱ)若f(x)=,求f(B)的取值范围.【考点】余弦定理;正弦定理.【分析】(I)由(a+b)(sinA﹣sinB)=(c﹣b)sinC,由正弦定理可得:(a+b)(a﹣b)=(c﹣b)c,化为b2+c2﹣a2=bc.再利用余弦定理可得:cosA.(II)f(x)=sinx+=+,在锐角△ABC中,<B,可得<B+<,即可得出.【解答】解:(I)∵(a+b)(sinA﹣sinB)=(c﹣b)sinC,由正弦定理可得:(a+b)(a﹣b)=(c﹣b)c,化为b2+c2﹣a2=bc.由余弦定理可得:cosA===,∵A∈(0,π),∴A=.(II)f(x)==sinx+=+,在锐角△ABC中,<B,∴<B+<,∴∈,∴f(B)的取值范围是.18.在市高三学业水平测试中,某校老师为了了解所教两个班100名学生的数学得分情况,按成绩分成六组:[80,90),[90,100),[100,110),[110,120),[120,130),[130,140)统计数据如下:分数段[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)人数 2 8 30 30 20 10(Ⅰ)请根据上表中的数据,完成频率分布直方图,并估算这100学生的数学平均成绩;(Ⅱ)该教师决定在[110,120),[120,130),[130,140)这三组中用分层抽样抽取6名学生进行调研,然后再从这6名学生中随机抽取2名学生进行谈话,记这2名学生中有ξ名学生在[120,130)内,求ξ的分布列和数学期望.【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(Ⅰ)由统计数据能作出频率分布直方图,利用频率分布直方图能估算这100学生的数学平均成绩.(Ⅱ)由题意,在[110,120),[120,130),[130,140)三组中,利用分层抽样抽取的学生数分别为3,2,1,ξ的可能取值为0,1,2,分别求出相应的概率,由此能求出ξ的分布列和Eξ.【解答】解:(Ⅰ)由统计数据作出频率分布直方图如下:∴估算这100学生的数学平均成绩:=10(85×0.002+95×0.008+105×0.03+115×0.03125×0.02+135×0.01)=113.8.(Ⅱ)由题意,在[110,120),[120,130),[130,140)三组中,利用分层抽样抽取的学生数分别为3,2,1,∴ξ的可能取值为0,1,2,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,∴ξ的分布列为:ξ 0 1 2PEξ==.19.如图所示,平面四边形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AD⊥ED,AF ∥DE,AB∥CD,CD=2AB=2AD=2ED=xAF.(Ⅰ)若四点F、B、C、E共面,AB=a,求x的值;(Ⅱ)求证:平面CBE⊥平面EDB;(Ⅲ)当x=2时,求二面角F﹣EB﹣C的大小.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(Ⅰ)根据四点F、B、C、E共面,以及三角形相似建立方程关系进行求解;(Ⅱ)根据面面垂直的判定定理即可证明平面BDE⊥平面BEC;(Ⅲ)建立空间坐标系,求出平面的法向量,利用向量法即可.【解答】证明:(Ⅰ)∵AF∥DE,AB∥CD,AF∩AB=A,DE∩DC=D,∴平面ABF∥平面DCE,∵平面ADEF⊥平面ABCD,∴FB∥CE,∴△ABF~△DCE,∵AB=a,∴ED=a,CD=2a,AF=,由相似比得,即,得x=4(Ⅱ)连接BD,设AB=1,则AB=AD=1,CD=2,可得BD=,取CD的中点M,则MD与AB平行且相等,则△BMD为等腰直角三角形,则BC=BD=,∵BD2+BC2=CD2,∴BC⊥BD.∵平面四边形ADEF与梯形ABCD所在的平面互相垂直,平面ADEF∩平面ABCD=AD,ED⊥AD,∴ED⊥平面ABCD,BC⊥DE,又∵ED∩BD=D,∴BC⊥平面BDE.又∵BC⊂平面BCE,∴平面BDE⊥平面BEC.( III)建立空间坐标系如图:设AB=1,∵x=2,∴CD=2,则F(1,0,1),B(1,1,0),E(0,0,1),C(0,2,0),=(1,0,0),=(1,1,﹣1),=(0,2,﹣1),设平面EF的一个法向量为=(x,y,z),则由得,则取=(0,1,1),设平面EBC的法向量为=(x,y,z),则,得,令y=1,则z=2,x=1,即=(1,1,2),则cos<,>===,则<,>=30°,∵二面角F﹣EB﹣C是钝二面角,∴二面角F﹣EB﹣C的大小为150°.20.已知抛物线C:y2=2px(p>0),定点M(2,0),以O为圆心,抛物线C的准线与以|OM|为半径的圆所交的弦长为2.(Ⅰ)求抛物线C的方程;(Ⅱ)若直线y=﹣x+m(m∈R)与抛物线交于不同的两点A、B,则抛物线上是否存在定点P (x0,y0),使得直线PA,PB关于x=x0对称.若存在,求出P点坐标,若不存在,请说明理由.【考点】抛物线的简单性质.【分析】(I)利用垂径定理和勾股定理列方程解出p即可得出抛物线方程;(II)联立方程组,由根与系数的关系得出A,B纵坐标的关系,假设存在符合条件的P点,则k PA+k PB=0,代入斜率公式化简即可求出x0,y0.【解答】解:(I)设抛物线的准线方程为x=﹣.圆O的半径r=2,由垂径定理得=4,解得p=2.∴抛物线方程为y2=4x.(II)联立方程组得y2+4y﹣4m=0,∴△=16+16m>0,解得m>﹣1.设A(x1,y1),B(x2,y2),则y1+y2=﹣4,y1y2=﹣4m.若抛物线上存在定点P(x0,y0),使得直线PA,PB关于x=x0对称,则k PA+k PB=0,∴+=+==0,∴y0=﹣=2,x0==1.∴存在点P(1,2),只要m>﹣1,直线PA,PB关于直线x=1对称.21.已知函数f(x)=x2+ax﹣lnx.(Ⅰ)求f(x)的单调区间;(Ⅱ)设g(x)=f(x)+2lnx,F(x)=3g(x)﹣2xg′(x),若函数F(x)在定义域内有两个零点x1,x2,且x1<x2,求证:<0.【考点】利用导数研究函数的单调性.【分析】(Ⅰ)求导根据导数和函数的单调性的关系即可求出,(Ⅱ)求导,根据中点坐标公式得到=﹣(x1+x2)+a+,①,分别把两个零点x1,x2,代入到F(x)中,转化,分离参数得到a﹣(x1+x2)=,再代入得到= [ln+],换元,构造函数得到h(t)=lnt+,根据导数求出h(t)的最大值,即可证明.【解答】解:(Ⅰ)函数的定义域为(0,+∞),∴f′(x)=2x+a﹣=,令f′(x)>0,得x>,f′(x)<0,得0<x<,∴函数f(x)在(,+∞)为增函数,在(0,)为减函数,(Ⅱ)由已知g(x)=f(x)+2lnx,∴F(x)=3g(x)﹣2xg′(x)=﹣x2+ax+3lnx﹣2,∴F′(x)=﹣2x+a+,即: =﹣(x1+x2)+a+,①∵函数F(x)在定义域内有两个零点x1,x2,∴﹣x12+ax1+3lnx1﹣2=0,②﹣x22+ax2+3lnx2﹣2=0,③②﹣③得﹣(x12﹣x22)+a(x1﹣x2)+3(lnx1﹣lnx2)=0可得(x1﹣x2)[a﹣(x1+x2)]+3ln=0,∴a﹣(x1+x2)=,代入①得: =+=[ln+]= [ln+],令=t,则0<t<1,∴h(t)=lnt+,∴h′(t)=+=﹣=≥0∴h(t)在(0,1)上为增函数,∴h(t)<h(1)=0,∵x1<x2,∴<0.请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时.用2B铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-1:几何证明选讲]22.如图所示,已知PA是⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E 点,F为CE上一点,且DE2=EF•EC.(Ⅰ)求证:A、P、D、F四点共圆;(Ⅱ)若AE•ED=12,DE=EB=3,求PA的长.【考点】与圆有关的比例线段.【分析】(Ⅰ)由已知中DE2=EF•EC,我们易证明,△DEF~△CED,进而结合CD∥AP,结合相似三角形性质,得到∠P=∠EDF,由圆内接四边形判定定理得到A、P、D、F四点共圆;(Ⅱ)由(Ⅰ)中的结论,结合相交弦定理得PE•EF=AE•ED=12,结合已知条件,可求出PB,PC的长,代入切割线定理,即可求出PA的长.【解答】解:(Ⅰ)证明:∵DE2=EF•EC,∴=,又∠DEF=∠CED,∴△DEF~△CED,∠EDF=∠ECD,又∵CD∥PA,∴∠ECD=∠P故∠P=∠EDF,所以A,P,D,F四点共圆;…5分(Ⅱ)由(Ⅰ)及相交弦定理得:PE•EF=AE•ED=12,又BE•EC=AE•ED=12,∴EC=4,EF==,PE=,PB=,PC=PB+BE+EC=,由切割线定理得PA2=PB•PC=×=,所以PA=为所求…10分[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+)=a,曲线C2的参数方程为,(θ为参数,0≤θ≤π).(Ⅰ)求C1的直角坐标方程;(Ⅱ)当C1与C2有两个公共点时,求实数a的取值范围.【考点】参数方程化成普通方程;直线与圆的位置关系.【分析】(Ⅰ)利用极坐标方程的定义即可求得;(Ⅱ)数形结合:作出图象,根据图象即可求出有两交点时a的范围.【解答】解:(Ⅰ)曲线C1的极坐标方程为ρ(sinθ+cosθ)=a,∴曲线C1的直角坐标方程为x+y﹣a=0.(Ⅱ)曲线C2的直角坐标方程为(x+1)2+(y+1)2=1(﹣1≤y≤0),为半圆弧,如图所示,曲线C1为一族平行于直线x+y=0的直线,当直线C1过点P时,利用得a=﹣2±,舍去a=﹣2﹣,则a=﹣2+,当直线C1过点A、B两点时,a=﹣1,∴由图可知,当﹣1≤a<﹣2+时,曲线C1与曲线C2有两个公共点.[选修4-5:不等式选讲]24.已知a>0,b>0,c>0,函数f(x)=|x+a|+|x﹣b|+c的最小值为4.(1)求a+b+c的值;河南省焦作市2016届高三数学一模试卷理(含解析)(2)求a2+b2+c2的最小值.【考点】一般形式的柯西不等式.【分析】(1)运用绝对值不等式的性质,注意等号成立的条件,即可求得最小值;(2)运用柯西不等式,注意等号成立的条件,即可得到最小值.【解答】解:(1)因为f(x)=|x+a|+|x﹣b|+c≥|(x+a)﹣(x﹣b)|+c=|a+b|+c,当且仅当﹣a≤x≤b时,等号成立,又a>0,b>0,所以|a+b|=a+b,所以f(x)的最小值为a+b+c,所以a+b+c=4;(2)由(1)知a+b+c=4,由柯西不等式得,(a2+b2+c2)(4+9+1)≥(•2+•3+c•1)2=(a+b+c)2=16,即a2+b2+c2≥当且仅当==,即a=,b=,c=时,等号成立.所以a2+b2+c2的最小值为.21 / 21。

相关主题