当前位置:文档之家› 高中物理力学经典例题集锦

高中物理力学经典例题集锦

高中物理典型例题集锦力学部分1、如图9-1所示,质量为M=3kg的木板静止在光滑水平面上,板的右端放一质量为m=1kg 的小铁块,现给铁块一个水平向左速度V0=4m/s,铁块在木板上滑行,与固定在木板左端的水平轻弹簧相碰后又返回,且恰好停在木板右端,求铁块与弹簧相碰过程中,弹性势能的最大值E P。

分析与解:在铁块运动的整个过程中,系统的动量守恒,因此弹簧压缩最大时和铁块停在木板右端时系统的共同速度(铁块与木板的速度相同)可用动量守恒定律求出。

在铁块相对于木板往返运动过程中,系统总机械能损失等于摩擦力和相对运动距离的乘积,可利用能量关系分别对两过程列方程解出结果。

设弹簧压缩量最大时和铁块停在木板右端时系统速度分别为V和V’,由动量守恒得:mV0=(M+m)V=(M+m)V’ 所以,V=V’=mV0/(M+m)=1X4/(3+1)=1m/s铁块刚在木板上运动时系统总动能为:EK=mV02==8J弹簧压缩量最大时和铁块最后停在木板右端时,系统总动能都为:E K’=(M+m)V2=(3+1)X1=2J铁块在相对于木板往返运过程中,克服摩擦力f所做的功为:W f=f2L=E K-E K’=8-2=6J铁块由开始运动到弹簧压缩量最大的过程中,系统机械能损失为:fs=3J由能量关系得出弹性势能最大值为:E P=E K-E K‘-fs=8-2-3=3J说明:由于木板在水平光滑平面上运动,整个系统动量守恒,题中所求的是弹簧的最大弹性势能,解题时必须要用到能量关系。

在解本题时要注意两个方面:①是要知道只有当铁块和木板相对静止时(即速度相同时),弹簧的弹性势能才最大;弹性势能量大时,铁块和木板的速度都不为零;铁块停在木板右端时,系统速度也不为零。

②是系统机械能损失并不等于铁块克服摩擦力所做的功,而等于铁块克服摩擦力所做的功和摩擦力对木板所做功的差值,故在计算中用摩擦力乘上铁块在木板上相对滑动的距离。

2、如图8-1所示,质量为m=0.4kg的滑块,在水平外力F作用下,在光滑水平面上从A点由静止开始向B点运动,到达B点时外力F突然撤去,滑块随即冲上半径为 R=0.4米的14光滑圆弧面小车,小车立即沿光滑水平面PQ运动。

设:开始时平面AB与圆弧CD相切,A、B、C三点在同一水平线上,令AB连线为X轴,且AB=d=0.64m,滑块在AB面上运动时,其动量随位移的变化关系为,小车质量M=3.6kg,不计能量损失。

求:(1)滑块受水平推力F为多大? (2)滑块通过C点时,圆弧C点受到压力为多大? (3)滑块到达D点时,小车速度为多大? (4)滑块能否第二次通过C点? 若滑块第二次通过C点时,小车与滑块的速度分别为多大? (5)滑块从D点滑出再返回D点这一过程中,小车移动距离为多少? (g取10m/s2)分析与解:(1)由,代入x=0.64m,可得滑块到B点速度为:V B m =3.2m/sA→B,由动能定理得:FS=12mV B2所以 F=m22BvS=×(2×=(2)滑块滑上C立即做圆周运动,由牛顿第二定律得:N-mg=m2CvR而V C=V B则N=mg+m2CvR=×10+×=(3)滑块由C→D的过程中,滑块和小车组成系统在水平方向动量守恒,由于滑块始终紧贴着小车一起运动,在D点时,滑块和小车具有相同的水平速度V DX。

由动量守恒定律得:mV C=(M+m)V DX所以 V DX=mV C/(M+m)=0.32m滑块一定能再次通过C点。

因为滑块到达D点时,除与小车有相同的水平速度V DX外,还具有竖直向上的分速度V DY,因此滑块以后将脱离小车相对于小车做竖直上抛运动(相对地面做斜上抛运动)。

因题中说明无能量损失,可知滑块在离车后一段时间内,始终处于D点的正上方(因两者在水平方向不受力作用,水平方向分运动为匀速运动,具有相同水平速度),所以滑块返回时必重新落在小车的D点上,然后再圆孤下滑,最后由C 点离开小车,做平抛运动落到地面上。

由机械能守恒定律得:1 2mV C2=mgR+12(M+m)V DX2+12mV DY2所以以滑块、小车为系统,以滑块滑上C点为初态,滑块第二次滑到C点时为末态,此过程中系统水平方向动量守恒,系统机械能守恒(注意:对滑块来说,此过程中弹力与速度不垂直,弹力做功,机械能不守恒)得:mV C=mV C‘+MV 即12mV C2=12mV C’2+12MV2上式中VC‘、V分别为滑块返回C点时,滑块与小车的速度,V=2mV C/(M+m)=0.64m V C’=(m-M)V C/(m+M)=2.56m与V反向)(5)滑块离D到返回D这一过程中,小车做匀速直线运动,前进距离为:△S=V DX2V DY/g=×2×10=3、如图10-1所示,劲度系数为 K的轻质弹簧一端与墙固定,另一端与倾角为θ的斜面体小车连接,小车置于光滑水平面上。

在小车上叠放一个物体,已知小车质量为 M,物体质量为m,小车位于O点时,整个系统处于平衡状态。

现将小车从O点拉到B点,令OB=b,无初速释放后,小车即在水平面B、C间来回运动,而物体和小车之间始终没有相对运动。

求:(1)小车运动到B点时的加速度大小和物体所受到的摩擦力大小。

(2)b的大小必须满足什么条件,才能使小车和物体一起运动过程中,在某一位置时,物体和小车之间的摩擦力为零。

分析与解:(1)所求的加速度a和摩擦力f是小车在B点时的瞬时值。

取M、m和弹簧组成的系统为研究对象,由牛顿第二定律:kb=(M+m)a 所以a=kb/(M+m)。

取m为研究对象,在沿斜面方向有:f-mgsinθ=macosθ所以,f=mgsinθ+mcosθ=m(gsinθ+cosθ)(2)当物体和小车之间的摩擦力的零时,小车的加速度变为a’,小车距O点距离为b’,取m为研究对象,有:mgsinθ=ma’cosθ取M、m和弹簧组成的系统为研究对象,有:kb‘=(M+m)a’以上述两式联立解得:b‘=(M+m)gtgθ说明:在求解加速度时用整体法,在分析求解m受到的摩擦力时用隔离法。

整体法和隔离法两者交互运用是解题中常用的方法,希读者认真掌握。

4、质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上。

平衡时,弹簧的压缩量为Xo,如图11-1所示。

一物块从钢板正上方距离为 3Xo的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连。

它们到达最低点后又向上运动。

已知物块质量也为m 时,它们恰能回到O点。

若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度。

求物块向上运动到达的最高点O点的距离。

分析与解:物块自由下落,与钢板碰撞,压缩弹簧后再反弹向上,运动到O点,弹簧恢复原长。

碰撞过程满足动量守恒条件。

压缩弹簧及反弹时机械能守恒。

自由下落3Xo,根据机械能守恒:所以物块与钢板碰撞时,根据动量守恒: mv0=(m+m)v1(v1为碰后共同速度)V1=V0/2=物块与钢板一起升到O点,根据机械能守恒:2mV12+Ep=2mgx0 [1]如果物块质量为2m,则:2mVo=(2m+m)V2,即V2=Vo设回到O点时物块和钢板的速度为V,则:3mV22+Ep=3mgx0+3mV2 [2]从O点开始物块和钢板分离,由[1]式得:Ep=mgx0代入[2]得:m(Vo)2+mgx0=3mgx0+3mV2所以,V2=gx0 即5、如图12-1所示,有两块大小不同的圆形薄板(厚度不计),质量分别为M和m,半径分别为R和r,两板之间用一根长为0.4m的轻绳相连结。

开始时,两板水平放置并叠合在一起,静止于高度为0.2m处。

然后自由下落到一固定支架C上,支架上有一半径为R‘(r<R’<R)的圆孔,圆孔与两薄板中心均在圆板中心轴线上,木板与支架发生没有机械能损失的碰撞。

碰撞后,两板即分离,直到轻绳绷紧。

在轻绳绷紧的瞬间,两物体具有共同速度V,如图12-2所示。

求:(1)若M=m,则V值为多大 (2)若M/m=K,试讨论 V的方向与K值间的关系。

分析与解:开始 M与m自由下落,机械能守恒。

M与支架C碰撞后,M以原速率返回,向上做匀减速运动。

m向下做匀加速运动。

在绳绷紧瞬间,内力(绳拉力)很大,可忽略重力,认为在竖直方向上M与m系统动量守恒。

(1)据机械能守恒:(M+m)gh=(M+m)V02所以,V0==2m/sM碰撞支架后以Vo返回作竖直上抛运动,m自由下落做匀加速运动。

在绳绷紧瞬间,M速度为V1,上升高度为h1,m的速度为V2,下落高度为h2。

则:h1+h2=0.4m,h1=V0t-gt2,h2=V0t+gt2,而h1+h2=2V0t,故:所以:V1=V0-gt=2-10×=1m/s V2=V0+gt=2+10×=3m/s根据动量守恒,取向下为正方向,mV2-MV1=(M+m)V,所以那么当m=M时,V=1m/s;当M/m=K时,V=。

讨论:①K<3时,V>0,两板速度方向向下。

②K>3时,V<0,两板速度方向向上。

③K=3时,V=0,两板瞬时速度为零,接着再自由下落。

6、如图13-1所示,物体A从高h的P处沿光滑曲面从静止开始下滑,物体B用长为L 的细绳竖直悬挂在O点且刚和平面上Q点接触。

已知mA=mB,高h及S(平面部分长)。

若A和B碰撞时无能量损失。

(1)若L≤h/4,碰后A、B各将做什么运动?(2)若L=h,且A与平面的动摩擦因数为μ,A、B可能碰撞几次?A最终在何处?分析与解:当水平部分没有摩擦时,A球下滑到未碰B球前能量守恒,与B碰撞因无能量损失,而且质量相等,由动量守恒和能量守恒可得两球交换速度。

A 停在Q处,B碰后可能做摆动,也可能饶 O点在竖直平面图13-1内做圆周运动。

如果做摆动,则经一段时间,B反向与A相碰,使A又回到原来高度,B停在Q处,以后重复以上过程,如此继续下去,若B做圆周运动,B逆时针以O为圆心转一周后与A相碰,B停在Q处,A向右做匀速运动。

由此分析,我们可得本题的解如下:(1)A与B碰撞前A的速度:mgh=mV A2,V A=因为m A=m B,碰撞无能量损失,两球交换速度,得:V A’=0,V B’=V A=设B球到最高点的速度为Vc,B做圆周运动的临界条件:m B g=m B V2/L [1]又因m B V B‘2=m B V2+m B g2L [2]将[1]式及V B’=代入[2]式得:L=2h/5即L≤2h/5时,A 、B 碰后B 才可能做圆周运动。

而题意为L=h/4<2h/5,故A 与B 碰后,B 必做圆周运动。

因此(1)的解为:A 与B 碰后A 停在Q 处,B 做圆周运动,经一周后,B 再次与A 相碰,B 停在Q 处,A 向右以速度做匀速直线运动。

相关主题