食物的消化吸收过程关于小肠的吸收面积小肠的全长约为5~6m,小肠腔面有许多由黏膜和黏膜下层向肠腔突出而形成的环形的皱襞,以及皱襞表面的绒毛。
由于皱襞和绒毛的存在,使小肠的吸收面积增大了30倍。
用光学显微镜观察,可以看到绒毛壁是一层柱状上皮细胞,细胞顶端(即面向肠腔的一端)有明显的纵纹。
近年来用电子显微镜观察,看到上皮细胞顶端的纵纹是细胞膜突起,这叫做微绒毛。
每个柱状上皮细胞可以有1700条左右的微绒毛。
微绒毛的存在,又使小肠的吸收面积比上面所估计的数值增大20倍以上。
总之,由于环形皱襞、绒毛和微绒毛的存在,使小肠的表面积比原来的表面积增大了600倍左右。
胃的运动胃的运动主要有以下三方面的作用。
贮存食物胃壁内的平滑肌具有很大的伸展性,伸长时可达原来长度的2~3倍。
因此,胃常可以容纳好几倍于自己原来容积的食物。
胃的平滑肌具有持续而微弱的收缩功能,使胃保持一定的紧张性。
当大量食物进入胃里时,胃的平滑肌主动放松,使胃的紧张性和胃内压不致有很大变化。
如果胃壁的紧张性过度降低,进食后胃壁可以极度扩张或下垂,就会引起胃扩张或胃下垂。
使食物和胃液充分混合食物进入胃以后,胃体中部开始产生蠕动。
蠕动的主要作用是使胃液和食物充分混合,形成食糜,便于消化酶发挥作用,并且把食糜推送到幽门部,然后经过幽门进入十二指肠。
胃的排空食糜进入十二指肠的过程叫胃的排空。
胃的排空时间,与食物的量、质和胃的运动状况有关。
一般地说水只需10 min就可以由胃排空,糖类需2h以上,蛋白质较慢,脂肪更慢。
吃了油性大的食物不容易感到饿,就是因为这种食物的胃排空时间长。
一般混合食物的胃排空约需4~5h。
胃排空后不久,能出现强烈的空胃运动,产生饥饿的感觉。
小肠运动小肠的运动方式主要有分节运动和蠕动两种。
分节运动是一种以环行肌舒缩为主的节律性运动(图8)。
由于一定间隔的环行肌同时收缩,所以能把食糜分割成许多节段,数秒以后,收缩的部分舒张,原来舒张部分的中间收缩,于是食糜形成新的节段。
如此反复进行,使食糜与消化液充分混合,便于化学性消化。
分节运动还能使食糜与肠壁紧密接触,有助于吸收。
蠕动是一种环行肌和纵行肌同时收缩的运动,它的作用是把食糜向大肠方向推送。
小肠蠕动的速度很慢,每秒约1~2 cm。
每个蠕动波把食糜推进一段距离(约数厘米)后即消失,然后在下一段又发生一个新的蠕动波,从而使经过分节运动作用过的食糜向前推进到一个新肠段,再开始分节运动。
正常情况下,小肠蠕动时,肠内的食糜和水、气体等被推动而发生一种“咕噜咕噜”的声音,叫肠鸣音。
用听诊器可以在腹壁上听到。
有时小肠蠕动加强,可以直接听到,即一般所谓的“肚子叫”,这种情况在肠炎腹泻时,尤为明显,称为肠鸣音亢进(增强)。
消化液的成分和作用各种消化液的成分和作用不尽相同,现在分别介绍如下。
唾液唾液近于中性,pH为6.6~7.1,成人每日分泌的唾液约为1~1.5L,其中约有99.4%是水,其余为唾液淀粉酶、溶菌酶和少量的无机物(如含钠、钾、钙的无机盐)等。
唾液的主要作用是:湿润口腔和食物,便于吞咽;唾液中含有的唾液淀粉酶能促使一部分淀粉分解为麦芽糖;唾液中含有的溶菌酶,有一定的杀菌作用。
胃液胃液呈酸性,pH为0.9~1.5,成人每日分泌的胃液约为1.5~2.5L。
胃液的主要成分有胃蛋白酶、胃酸(即盐酸)和黏液。
此外还含有钠盐、钾盐等无机物。
胃蛋白酶能促使蛋白质分解为和胨以及少量的多肽。
盐酸除能激活胃蛋白酶原以外,还有以下的作用:为胃蛋白酶促使蛋白质分解提供适宜的酸性环境;抑制或杀死胃内的细菌;盐酸进入小肠,能促进胰液、胆汁和小肠液的分泌。
黏液的作用是它经常覆盖在胃黏膜的表面,形成一层黏液膜,有润滑作用,使食物容易通过,并且能够保护胃黏膜不受食物中的坚硬物质的机械损伤;黏液为中性或偏碱性,能够中和盐酸,减弱胃蛋白酶的活性,从而防止盐酸和胃蛋白酶对胃黏膜的消化作用。
胰液胰液呈碱性,pH为7.8~8.4,成人每日分泌的胰液约为1~2L。
胰液的主要成分有碳酸氢钠、胰淀粉酶、胰脂肪酶、胰蛋白酶原和糜蛋白酶原等。
碳酸氢钠能够中和由胃进入十二指肠的盐酸,并且为小肠内消化酶提供适宜的弱碱性环境。
胰蛋白酶原进入小肠以后,在小肠液中的肠激酶的作用下,激活为胰蛋白酶。
胰蛋白酶又可以迅速激活其余大量的胰蛋白酶原为胰蛋白酶,也可以激活糜蛋白酶原为糜蛋白酶。
胰蛋白酶和糜蛋白酶共同作用于蛋白质,蛋白质就被分解为多肽和少量氨基酸。
存在于胰液中的胰淀粉酶和少量的胰麦芽糖酶,又可以分别促使淀粉和麦芽糖分解为葡萄糖。
胰脂肪酶在胆汁的协同作用下,促使脂肪分解为脂肪酸和甘油。
胰液由于含有消化三种主要营养成分的消化酶,因而是所有消化液中最重要的一种。
临床和实验都证明,当胰液缺乏时,即使其他消化液的分泌都很正常,食物中的蛋白质和脂肪仍然不能完全消化,因而也影响营养成分的吸收。
脂肪吸收的障碍,还可以使脂溶性维生素的吸收受到影响。
胰液缺乏时,糖类的消化一般不受影响。
胆汁胆汁是由肝细胞分泌的,在胆囊内贮存。
当食物进入口腔、胃和小肠时,可以反射性地引起胆囊收缩,胆汁经过总胆管流入十二指肠。
成人每日分泌的胆汁约为0.8~1.0L。
胆汁中没有消化酶,主要成分是胆盐和胆色素。
胆盐的作用是:激活胰脂肪酶;将脂肪乳化成极细小的微粒,可以增加脂肪与胰脂肪酶的接触面积,有利于脂肪的消化和吸收;可以与脂肪酸和脂溶性维生素等结合,形成水溶性复合物,以促进人体对这些物质的吸收。
人类的胆色素主要是胆红素。
胆红素呈橙色,是红细胞破坏以后的产物。
当红细胞大量破坏或肝脏和胆道功能损坏时,胆红素在血液中的浓度升高,使皮肤和黏膜等组织染成黄色,临床上称为黄疸。
小肠液小肠液呈弱碱性,pH约为7.6,成人每日分泌的小肠液为1~3L。
小肠液含有多种消化酶,如淀粉酶、麦芽糖酶、蔗糖酶、乳糖酶、肽酶、脂肪酶等。
通过这些酶的作用,进一步分解糖类、蛋白质和脂肪,使之成为可以吸收的物质。
营养物质的吸收糖类经过消化分解为单糖(主要是葡萄糖,还有果糖和半乳糖)以后,由小肠黏膜吸收入小肠绒毛内的毛细血管,再通过门静脉入肝,一部分合成肝糖元贮存起来,另一部分由肝静脉入体循环,供全身组织利用。
蛋白质主要以氨基酸的形式被小肠黏膜吸收,经过小肠绒毛内的毛细血管进入血液循环。
有些未经消化的天然蛋白质或蛋白质分解的中间产物,也可以被小肠黏膜吸收,但吸收量极少。
有些人对某种食物过敏,可能是由于某种蛋白质被小肠直接吸收而引起的。
脂肪在胆盐、胰液和小肠液的作用下消化分解,形成甘油、游离脂肪酸和甘油一酯,以及少量的甘油二酯和未消化的甘油三酯。
胆盐可以与脂肪的水解产物形成水溶性复合物。
这些水溶性复合物聚合成脂肪微粒(主要成分为胆盐、甘油一酯和脂肪酸)。
有人认为这种脂肪微粒能被小肠上皮细胞通过吞饮作用而直接吸收。
但也有人认为这种脂肪微粒在被吸收时,各主要成分先分离再分别进入小肠上皮细胞。
当上述物质(主要是甘油一酯和脂肪酸)进入小肠上皮细胞后,重新合成为中性脂肪,并在外面包上一层由卵磷脂和蛋白质形成的膜,而成为乳糜微粒。
乳糜微粒和多数长链脂肪酸进入小肠绒毛内的毛细淋巴管(也叫中央乳糜管),再经过淋巴循环间接进入血液。
多数短、中链脂肪酸和甘油可以溶于水,被吸收入毛细血管,直接进入血液循环。
由于食物中的动、植物油含长链脂肪酸较多,因此,脂肪的吸收以淋巴途径为主。
肝脏的主要功能肝脏具有以下一些主要功能:代谢功能肝脏对于人体内蛋白质、糖类、脂类等很多物质的代谢有重要作用。
肝脏在蛋白质的合成和分解的过程中都起着重要的作用。
人体的一般组织细胞都能合成自己的蛋白质,但是肝脏除能合成自己的蛋白质以外,还能合成大部分的血浆蛋白质(如白蛋白、纤维蛋白原等)。
据估计,肝脏合成的蛋白质占全身合成蛋白质总量的40%以上。
所以患慢性肝炎或严重肝病变的病人,血中的白蛋白含量显著降低。
肝脏中氨基酸代谢比其他组织中的氨基酸代谢活跃,这是因为肝脏中含有丰富的催化氨基酸代谢的酶类,谷氨酸丙酮酸转氨酶(简称GPT)就是其中之一。
正常肝细胞中的GPT很少进入血液,只有肝病变时,由于肝细胞的细胞膜通透性增加,或肝细胞坏死,GPT 可以大量进入血液。
所以,临床上常用测定血清中GPT的数值,作为诊断肝脏疾病的重要指标之一。
肝脏在糖类代谢中占有重要地位。
在肝脏中,葡萄糖和糖元可以互相转化;从小肠吸收来的其他单糖(如果糖、半乳糖等)可以转化为葡萄糖;脂肪和蛋白质代谢过程中产生的某些非糖物质也可以转化成糖。
其中特别重要的作用是维持血液中葡萄糖(简称血糖)含量的相对恒定,以保证全身(特别是脑组织)糖的供应。
血糖的含量通常约为80~120mg/dL。
当大量的食物经过消化,陆续吸收到体内,血糖含量会显著地增加。
这时,肝脏可以把一部分葡萄糖转变成糖元,暂时贮存起来,使血糖含量仍然维持在80~120mg/dL的水平。
由于细胞进行生理活动要消耗血糖,血糖的含量会逐渐降低。
这时,肝脏中的糖元又可以转变成葡萄糖,陆续释放到血液中,使血糖的含量仍然维持在80~120mg/dL的水平。
肝脏在脂类代谢中也有重要作用。
肝细胞分泌的胆汁可以促进脂类的消化和吸收。
肝功能障碍时,胆汁分泌减少,脂肪消化不良,就出现厌油食等症状,所以肝病患者要少吃脂肪。
此外,肝脏还是合成磷脂,胆固醇等的重要场所。
肝脏在维生素代谢中也有作用,它是维生素A、D、E、K、B1、B6和B12等多种维生素的贮存场所。
肝脏能把食物中的胡萝卜素转变为维生素A,因此,多吃含有胡萝卜素的蔬菜(如胡萝卜、番茄等),就不容易发生维生素A的缺乏症。
解毒功能在日常生活中,有些有毒物质(如来自体外的农药,大肠内蛋白质经过细菌的腐败作用而产生的胺等)常常被吸收入人体,随着血液流入肝脏。
此外,还有一些体内代谢过程中产生的有毒物质。
这两类有毒物质在肝内各种酶的作用下,可以通过氧化分解或与其他物质结合等方式进行处理,变成无毒或毒性较小或溶解度较大的物质,最后排出体外。
例如,肝能将蛋白质分解后产生的对人体有害的氨,变成对人体无害的尿素。
尿素可以随着尿排出体外。
又如,有毒的重金属(铅、汞等)被吸收以后,经过肝脏的处理,可以随着胆汁经过肠道排出体外。
不过,如果毒物过多,超过肝脏的解毒能力,或肝功能减弱时,则会发生中毒现象。
蛋白质吸收到体内后的变化食物中的蛋白质消化成各种氨基酸,吸收到体内以后,有以下四个方面的转变:①直接被用来合成各种组织蛋白质,包括血浆蛋白和血红蛋白。
有些组织蛋白质的合成进行得非常迅速。
例如,老鼠的肝脏被切去70%后,差不多在9~12d之内就可以全部再生出来。
临床观察也证明,人的肝脏被部分切除以后,也能迅速再生;②经脱氨基作用而分解为含氮部分(即氨基)和不含氮部分:氨基可以转变为尿素而排出体外;不含氮部分可以合成糖类、脂肪,也可以分解成二氧化碳和水;③通过氨基转换作用,氨基可以转移给其他化合物以形成新的氨基酸;④经过脱羧基作用,可以产生胺类,例如组氨酸脱去羧基(COOH)后,可以生成组织胺或新的氨基酸。