当前位置:文档之家› 几何构型优化

几何构型优化


~ the first term is set to zero ~ the second term can be shown to be equivalent
to the force ~ the third term can be shown to be equivalent
to the force constant
2
0Байду номын сангаас
2

E 2 2 0
2 0 E 0 极小值点 2 i 2 0 E 0 2 p 鞍点 2 2 E E 0 2 i 2 3 N 6 (i = 1, 2, ,p-1, p+1, 3N-6)
对于多原子分子体系,其能量对位置的二阶 偏导数矩阵可以表示为: Hessian Matrix
2E 2 R 1 2 E R R 2 1 2 E R3 N 6 R1
2E R1R2 2E 2 R2 2 E R3 N 6 R2
HCC HCC 3 180. HCC 3 180. HCC 4 180.
3.2.3 Optimization Output(输出文件)
3.3 Locating Transition Structures
寻找过渡态
关键词: Opt=QST2 # UHF/6-31G(d) Opt=QST2 Test
3.2.2 Preparing Input for Geometry Optimizations
几何构型优化的输入文件
# RHF/6-31G(d) Opt Test
Ethylene Geometry Optimization 0 C C H H H H 1
1 CC 1 CH 2 1 CH 2 2 CH 1 2 CH 1 Variables: CC=1.31 CH=1.07 HCC=121.5
坐标i称为简正坐标
3.2 Locating Minima(寻找极小值)
几何构型优化通常就是在势能面上寻找极小 值点。极小值点对应的几何构型就是分子可能的 平衡几何构型。
对于所有极小值和鞍点,其能量对位置的一阶 偏导数,即梯度(gradient)都为零,这样的点被称为 驻点(stationary point)。
0 C O H H H
2
1 1 1 1 1.48 R 2 1.08 2 1.08 2 A 110. 110.
3 3
120. -120.
R=1.9 A=30
3.4 Handling Difficult Optimization Cases
复杂体系的优化
Opt=ReadFC 从频率分析 ( 往往是采用低等级的
其中E为能量,Ri为坐标。
泰勒级数展开
E ( x ) 1 ( 0) (0) E ( xi ) E ( x ) ( xi x ) ( xi xi )(x j x j ) xi 2 i, j i
( 0) i ( 0) i ( 0) i
2 E ( xi(0) , x (j0) ) xi x j
# UHF/6-31G(d) Opt=QST2
H3CO --> H2COH Reactants 0 C O H H H 2
1 1 1 1
1.48 R 2 A 1.08 2 110. 1.08 2 110.
3 120. 3 -120.
R=1.08 A=110.
H3CO --> H2COH Reactants
Chapter 3. Geometry Optimizations
几何构型优化
Energy minimization methods: The steepest descents, Congugate gradients, Newton-Raphson, etc.
3.1 Potential Energy Surface (PES)
势能面
Local Maximum/Minimum (局域极大/小值):
是一个区域内的能量最高(低)点,向任何方向的 几何位置的变化都能够引起能量的减小(增加)。
Global Maximum/Minimum (全局最大/小值):
在所有的局域极大(小)值中的最大(小)值 Saddle Point (鞍点): 则是在一个方向上具有极大值,而在其他方向上 具有极小值的点。一般的,鞍点代表连接着两个极小 值的过渡态。
从数学角度分析化学反应势能面
反应物(reactants)、生成物(products)和过渡
态 (transition states)都是势能曲面的极值点。对 于N个原子的体系(3N-6维坐标),极值点的条件是 能量对位置的一阶偏导数为零: E / Ri = 0 (i = 1, 2, , 3N-6)
3.2.1 Convergence Criteria(收敛标准)
对于Gaussian98,默认收敛标准为同时满足四个条件:
Maximum Force RMS Force 力变化的最大值必须小于 力变化的均方根小于 0.00045 0.0003 0.0018 0.0012
Maximum Displacement 下一步计算的原子坐标位移小于 RMS Displacement 其均方根小于
计算得到的)所得到的checkpoint文件中读取初始力
矩阵。
Opt=CalCFC 采用优化方法同样的基组来计算力 矩阵的初始值。 Opt=CalcAll 在优化的每一步都计算力矩阵。这 是非常费时昂贵的计算方法 , 只在非常极端的条件
下使用。
3.5 练习
Example 3.1: Ethylene(乙烯) Optimization Example 3.2: Fluoroethylene(氟乙烯) Optimization Example 3.3: Transition State Optimization Exercise 3.1: Optimizations of Propene( 丙烯) Conformers

2E R1R3 N 6 2E R2 R3 N 6 2 E 2 R3 N 6
通过正则变换,可以找到一组坐标i (i=1, 2, , 3N-6) 使上述Hessian Matrix对角化:
E 2 1 0 0
相关主题