第一章1.1解:)(k s m 84.259mk R 22328315•===-气瓶中氧气的重量为1.2解:建立坐标系根据两圆盘之间的液体速度分布量呈线性分布 则离圆盘中心r ,距底面为h 处的速度为当n=0时 u=0推出0u 0= 当n=h 时 u=wr 推出hwr k =则摩擦应力τ为上圆盘半径为r 处的微元对中心的转矩为 则⎰⎰==T 2D 0332032D u drd hr uωπθωπ1.4解:在高为10000米处T=288.15-0.0065⨯10000=288.15-65=223.15压强为⎪⎭⎫ ⎝⎛=Ta T Pa P 5.2588密度为2588.5Ta T a ⎪⎭⎫⎝⎛=ρρ1-7解:2M KG 24.464RTPRT p ==∴=ρρ空气的质量为kg 98.662v m ==ρ 第二章2-2解流线的微分方程为yx v dy v dx =将v x 和v y 的表达式代入得ydy x dx yx 2dyx y 2dx 22==, 将上式积分得y 2-x 2=c ,将(1,7)点代入得c=7因此过点(1,7)的流线方程为y 2-x 2=48 2-3解:将y 2+2xy=常数两边微分 2ydy+2xdx+2ydx=0整理得ydx+(x+y )dy=0 (1)将曲线的微分方程yx V dyV dy =代入上式得 yVx+(x+y )V y =0由22y 2xy 2x V ++=得 V x 2+V y 2=x 2+2xy+y 2 ((2)由(1)(2)得()y v y x v y x μ=+±=,2-5解:直角坐标系与柱坐标系的转换关系如图所示 速度之间的转换关系为{θθθθθθcos v sin v v sin v cos v v r y r x +=-=由θθθθθθcos r1y v sin yrsin r 1xv cos x rrsin y rcos x =∂∂=∂∂⎪⎩⎪⎨⎧-=∂∂=∂∂⇒⎭⎬⎫==2-6解:(1)siny x 3x V 2x -=∂∂ siny x 3y V 2y =∂∂ 0yVx V y x =∂∂+∂∂ ∴此流动满足质量守恒定律(2)siny x 3x V 2x =∂∂ siny x 3y V 2y =∂∂ 0siny x 6y V x V 2y x ≠=∂∂+∂∂∴此流动不满足质量守恒定律(3)V x =2rsin rxy 2=θ V y =-2rsin 2ry 22-=θ∴此流动不满足质量守恒方程(4)对方程x 2+y 2=常数取微分,得xdy dy dx -= 由流线方程yx v dy v dx =(1) 由)(得2r k v v r k v 422y 2x =+= 由(1)(2)得方程3x r ky v ±= 3yr kx v μ= ∴此流动满足质量守恒方程2—7解:0x V z V 0r yz 23r yz 23z V y V zx 2727y z =∂∂-∂∂=⋅+⋅-=∂∂-∂∂同样 0y V x V x y =∂∂-∂∂∴该流场无旋2—8解:(1)a x V x x =∂∂=θ a yV y y =∂∂=θ a z Vz z -=∂∂=θ (2)0y V x V 210x V z V 210z V y V 21x y z z x y y z x =⎪⎪⎭⎫⎝⎛∂∂-∂∂==⎪⎭⎫ ⎝⎛∂∂-∂∂==⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=ωωω;; (3)azdz 2aydy ax dx dz v dy v dx v d z y x -+=++=ϕ 2—9解:曲线x 2y=-4,()04y x y x f 2=+=, 切向单位向量22422422y2x 2y2x yx 4x x y 2i yx 4x x j f f fx i f f fy t +-+=+-+=把x=2,y=-1代入得()()j x 2x i y x 2x j yi x v 2+-+--=∂∂+∂∂=∇=ϕϕϕ 2—14解:v=180hkm =50s m 根据伯努利方程22V 21V 21p ρρρ+=+∞∞ pa p =∞驻点处v=0,表示为1531.25pa 501.22521V 21pa p 22=⨯⨯==-∞ρ相对流速为60s m 处得表示为75.63760225.12125.1531V 21V 21pa p 222-=⨯⨯-=-=-∞ρρ 第三章3—1解:根据叠加原理,流动的流函数为()xyarctg 2Q y V y x πϕ+=∞, 速度分量是22y 22x yx y2Q x V y x x 2Q V y V +⋅=∂∂-=+⋅+=∂∂=∞πϕπϕ; 驻点A 的位置由V AX =0 V Ay =0求得 0y V 2Qx A A =-=∞;π 过驻点的流线方程为2x y arctg 2y x y arctg 2y y Q V Q V A A A =+=+∞πθπ 在半无限体上,垂直方向的速度为θπθθππ-sin v r sin 2y x y 2v 222y ∞==+=Q Q 线面求极值()0-sin v -cos sin v 2d dv 22y=+=∞∞θπθθπθθθ当0sin =θ 0v v min y y ==2-tg -=θπθmax y y v v =用迭代法求解2-tg -=θπθ得 由θπθθππ-sin v r sin 2y x y 2v 222y ∞==+=Q Q 可计算出当∞∞===v 6891574.0v v 724611.0v x y 1,时,θθ 合速度∞=+=v v v 2y 2x V3—3解:设点源强度为Q ,根据叠加原理,流动的函数为两个速度分量为()()()⎥⎥⎦⎤⎢⎢⎣⎡+++++++--=222222a 3-y x xy a x a x y a x a x 2x πθ对于驻点,0v v y x ==,解得a 33y 0x ==A A , 3—4解:设点源的强度为Q ,点涡的强度为T ,根据叠加原理得合成流动的位函数为 速度与极半径的夹角为Qarctg arctgr Γ==V V θθ 3—5根据叠加原理得合成流动的流函数为⎪⎪⎭⎫ ⎝⎛+--+=∞y a y yaarctg a y y aarctg V ϕ 两个速度分量为()()()()⎥⎦⎤⎢⎣⎡++---+++=∂∂=∞1y v 2222x y a x a x a y a x a x a V ϕ 由驻点()0a 30,得驻点位置为±==y x v v 零流线方程为0ay yaarctg a y y x aarctgy =--++∞∞V V 对上式进行改变,得⎪⎭⎫ ⎝⎛-=-+a y tan ay2a y x 222当0x =时,数值求解得a 03065.1y ±= 3—9解:根据叠加原理,得合成流动的流函数为速度分量为()()2222x y a x ax 2y a x a x 2y v v +-+++++-=∞ππQ Q由0v v y x ==得驻点位置为⎪⎪⎭⎫ ⎝⎛+±∞0v a a 2,πQ过驻点的流线方程为ay y arctg 2a y y arctg 2y v =-++--∞ππQ Q 上面的流线方程可改写为ay yarctg a y y arctg y v 2--+=∞Q π 容易看出y=0满足上面方程当0y ≠时,包含驻点的流线方程可写为⎪⎭⎫ ⎝⎛-=-+∞Q y v 2tan ay2a y x 222π当12v a ===∞πQ时,包含驻点的流线方程为tany y 21y x 22--=-+ 3—10解:偶极子位于原点,正指向和负x 轴夹角为α,其流函数为 22yx x sin ycos 2+--=ααπϕM 当ο45=α时 3—11解:圆柱表面上的速度为a2sin v 2v πθΓ--=∞ 压强分布函数为222p v asin 41sin 41v v 1⎪⎪⎭⎫ ⎝⎛Γ+-=⎪⎪⎭⎫ ⎝⎛-=∞∞θπθC第四章4—1解:查表得标准大气的粘性系数为n kg 1078.1u 5-⨯=平板上下两面所受的总得摩擦阻力为4—2解:沿边阶层的外边界,伯努利方程成立代表逆压梯度代表顺压梯度,时;当时当0m 0m 00m 00m m v v v 21p 12201002〈〉∴〉∂∂〈〈∂∂〉-=-=∂∂-=∂∂=+--xpx p x v x v x v xx p c m m m Θρρρρδδδ 4—4解:(a )将2x y 21y 23v v ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=δδδ带入(4—90)中的第二式得由牛顿粘性定律δτδu u 23y v u 0y x w =⎪⎪⎭⎫ ⎝⎛∂∂==下面求动量积分关系式,因为是平板附面层 0dx dv =∴δ积分关系式可表示为dxd v 2w **=δρτδ将上述关系式代入积分关系式,得δρδδv dx u d 14013=边界条件为x=0时,0=δ 积分上式,得平板边界层的厚度沿板长的变化规律()64.428039646.0x x x64.4ll ⨯==∴=**R R δδ(b )()74.164.483x x 83dy v v 1lx =⨯=∴=⎪⎪⎭⎫ ⎝⎛-=*∞*⎰R δδδδ(c )由(a )知()64.4x x l =R δ(d )646.0x x646.0v 21324xx 64.4u23l f l 2wf l w =∴====R C R C R δρτδδδτ)得—由(; (e )单面平板的摩擦阻力为()292.1x x 292.1s v 21b bdx v 21l f l 2f l02f=∴===⎰R C R X C C X F F δδρρ摩阻系数为假设版宽为 4—6解:全部为层流时的附面层流厚度由式(4—92)得全部为湍流时的附面层流厚度由式(4—10)得 第五章5-1 一架低速飞机的平直机翼采用NACA2415翼型,问此翼型的f ,f x 和c 各是多少?解:此翼型的最大弯度f =2% 最大弯度位置f x =40% 最大厚度c =15%5-2 有一个小α下的平板翼型,作为近似,将其上的涡集中在41弦点上,见图。
试证明若取43弦点处满足边界条件,则αl C =2π 1-rad解:点涡在41处,在43处满足边界条件,即代入边界条件表达式 α∞∞-=v dxdy v v f '中,∴升力Γ=Y ∞vρ5-3 小迎角下平板翼型的绕流问题,试证明)(θγ可以有以下两种形式的解:1)αθθθγ∞⋅=v 2sin cos )( 2) αθθθγ∞⋅+=v 2sin cos 1)( 而解1)满足边界条件,解2)不满足边界条件。