当前位置:文档之家› 第一章生活中的数学美

第一章生活中的数学美

第一章生活中的数学美核心提示:美国数学家克莱因曾对数学美作过这样的描述:“音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科技可以改善物质生活,但数学却能提供以上一切。

”作为科学的语言,数学具有一般语言文学与艺术共有的美的特征,这就是数学在其内容结构与方法上都具有的某种美,但数学美又有自身的独特含义。

简单的说,数学美有四个方面的表现形式:和谐美、对称美、简洁美、奇异美一、和谐美。

一、和谐美1是一个最简单的数,但同时可以说一切数起源于1。

越来越复杂的数系,如:自然数,由1演变出所有自然数:2、3、4、5、6,…,后来再加进它们的相反数:-1、-2、-3、-4、…;它们依然是和谐的,而且起源于1。

黄金分割数0.618,它不仅仅是一个小数,它却是生活中和谐美的代言人。

在日常生活中,最和谐悦目的矩形,如电视屏幕、写字台面、书籍、衣服、门窗等,其短边与长边之比为0.618,你会因此比例协调而赏心悦目。

甚至连火柴盒、国旗的长宽比例设计,都恪守0.618值。

在音乐会上,报幕员在舞台上的最佳位置,是舞台宽度的0.618之处;二胡要获得最佳音色,其“千斤”则须放在琴弦长度的0.618处。

最有趣的是,在消费领域中也可妙用0.618这个“黄金数”,获得“物美价廉”的效果。

据专家介绍,在同一商品有多个品种、多种价值情况下,将高档价格减去低档价格再乘以0.618,即为挑选商品的首选价格。

古希腊断臂维纳斯、雅典娜女神和“海姑娘”阿曼达,其体型结构比例完全符合黄金分割率(在躯干部分,乳房位置的上下长度比;咽喉至头顶和至肚脐之比;膝盖至脚后跟和至肚脐之比等,都是黄金分割数0.618的近似数),美妙绝伦。

可见,黄金分割的美,无处不在,它充分体现了生活中的数学美。

二、对称美在古代“对称”一词的含义是“和谐”、“美观”。

事实上,译自希腊语的这个词,原义是“在一些物品的布置时出现的般配与和谐”。

毕达哥拉斯学派认为,一切空间图形中,最美的是球形;一切平面图形中,最美的是圆形。

圆是中心对称圆形――圆心是它的对称中心,圆也是轴对称图形――任何一条直径都是它的对称轴。

对称美的形式很多,人们对于对称美的追求是自然的、朴素的。

对称的建筑物、对称的图案,是随处可见的。

如我们喜爱的对数螺线、雪花,知道它的一部分,就可以知道它的全部。

绘画中利用对称,文学作品中也有对称手法。

在数学中则表现在几何图形中有点对称、线对称、面对称。

在几何图形中还有一些深层次的对称美:如图,虽然黄金分割点(在0.618处)不是对称点,但若将左端点记为A,右端点记为B,黄金分割点记为C,则AC=0.618AB;而且C关于中点的对称点D也是A的黄金分割点(因为BD=0.618AB);再进一层看,D又是AC的黄金分割点,C是DB的黄金分割点。

类似一直讨论下去,这可视为一种连环对称。

三、简洁美简洁、有效、经济给人以美感,繁琐、臃肿、无谓的消耗则给人以相反的感觉。

数学不愿意把1亿写成100000000,而写成108,更不愿意把一亿分之一写成,而乐于写成10-8。

欧拉给出的公式:V-E+F=2,堪称“简洁美”的典范。

世间的多面体有多少?没有人能说清楚。

但它们的顶点数V、棱数E、面数F,都必须服从欧拉给出的公式,一个如此简单的公式,概括了无数种多面体的共同特性,能不令人惊叹不已?由它还可派生出许多同样美妙的东西。

如:平面图的点数V、边数E、区域数F满足V-E+F=2,这个公式成了近代数学两个重要分支——拓扑学与图论的基本公式。

由这个公式可以得到许多深刻的结论,对拓扑学与图论的发展起了很大的作用。

数学的简洁美,并不是指数学内容本身简单,而是指数学的表达形式、数学的证明方法和数学的理论体系的结构简洁。

如数“1”,小至一个原子、粒子;大至一个太阳、一个宇宙……宇宙万物,均可以用“1”来表示。

又如公式“C=2πR”中的周长与半径有着简洁和谐的关系,一个传奇的数“π”把它们紧紧相连。

简单举例:计算。

面对这个计算题,若贸然用一般的通分的方法来解决,会带来繁杂的计算。

当仔细审视这题的特点,发现每一项的分数的分子皆是1,而分母可分别分拆成两个相连的自然数之积,即1×2,2×3,3×4,4×5,5×6,6×7,7×8,8×9,9×10,于是,立即使我们联想到,把每个分数都分拆成两个分数之差。

这样一来,尽管计算过程中分数的项数增加了一倍,但出现正负相间的两个相同的分数,中间的项对消了,只剩下首末两项,从而很快获得结果,即。

这一简洁的解法,给人以美的享受。

我们最常见的钱币为什么只有1、2、5(分、角、元)这三个面值呢?因为只要有了这三个面值,就可以简单支付任何数目的款项,这就蕴藏了数学的简单统一美。

四、奇异美在中小学数学教材中,很多内容都反映了数学的奇异美。

如:用七块板可以拼成一个最简单的正方形,也可以拼出千变万化的复杂图案:如人形、鸟兽、花草、房屋等。

通过七巧板拼图练习,学生感到图案之多,出人意料;图形之美,妙趣横生。

又如:解答“等差数列{an}中a2+a5+a12+a15=36,求S16。

”分析:由已知可列出首项与公差之间的关系,但两个未知数一个方程一般无法求解。

这可到了“山穷水复疑无路”了,这时突然注意到下标特点,第一项下标和第四项下标之和为17,第二项、第三项下标之和为17,所以利用等差数列的性质a1+a16=a2+a17=a5+a12 这又变成了“柳暗花明又一村”了,这是出人意料令人震惊的美,解答这样的题无疑是一种精神上的享受,我们会从恍然大悟中得到答案,体会到一种奇异的美感。

再如:椭圆与正弦曲线会有什么联系吗?做一个实验,把厚纸卷起做成一个圆筒,斜割这一圆筒成两部分。

如果不拆开圆筒,那么截面将是椭圆;如果拆开圆筒,切口形成的即是正弦曲线。

这其中的玄妙是不是很奇异、很美。

我们真切地体会到:数学使我们的生活变得更加美丽。

第二章数学中的对称美对称通常是指图形或物体对某个点,直线或平面而言,在大小、形状和排列上具有一一对应关系,在数学中,对称的概念略有拓广常把某些具有关连或对立的概念视为对称,这样对称美便成了数学中的一个重要组成部分,对称美是一个广阔的主题,在艺术和自然两方面都意义重大,数学则是它根本,美和对称紧密相连。

大自然中具备对称美的事物有许许多多,如枫叶、雪花等等,对称本身就是一种和谐、一种美。

在数学中的应用也非常广泛,如:大家都非常熟悉的轴对称图形等等,其实根据对称原理在小学数学中各知识领域,均可发现这一规律的应用。

如何让学生掌握对称这一基本原理去解决一些实际问题,找到事物之间的内在统一性,用数学的思想去内化这一即简单,又蕴涵深刻哲理的原理,这需要我们深层了解隐藏在问题后面的本质特征,现根据笔者在教学中发现的一些案例,来阐述如何发现数学中的对称美。

一、从回文数中得到启发,巧解等差数列回文数有许多如:2002年就是一个回文数,下一个回文数就要等到2112年,整数乘法中最有趣的一个回文数就是:1×1=1,11×11=121,111×111=12321。

根据这一规律可以巧算出:111111111×111111111=12345678987654321,学生对于回文数这一特殊结果,大都觉得非常惊讶,对此产生浓厚的兴趣,感叹数的对称美。

对称作为一种美,在宇宙万物中成为一个永恒的定理,就象有阴就有阳,有黑就有白一样,说的更玄乎一些,像现代物理学理论中所推论的那样有正物质就有反物质,如,我们生活中所看到感受到的一切客观事物都是正物质,同样宇宙中也存在我们看不见的能量和正物质一样相等的反物质,这样宇宙才均衡,就像宇宙中有你,同样也存在着“反你”,如果有一天“你们”一握手,那么你和“反你”就顿时消失,就像5+(-5)=0一样,说来有些荒唐,可是这种设想在解答一些难题时,却显得巧妙、易懂。

如在小学对程度比较好的学生上等差数列求和时,大都用公式:(首项+末项)×项数÷2来教学,可对于小学生要掌握和理解有一定困难。

如一道“有女不善织”的古代算术题:有位妇女不善织布,她每天织的布都比上一天要减少一些,减少的数量是相等的,她第一天织了五尺,最后一天织了一尺,一共织了三十天,她一共织了多少尺布?这题的难点在于除了第一天和最后一天,中间每天织的布不是整数,而且每天比上一天少织多少布也不易求。

可运用对称的思想是这样解答的:假设还有另一位姑娘也和这位妇女一样织布,只不过她与这位妇女织布的情况刚好相反:姑娘每天织的布都比上一天要增加一些,增加的数量是相等的,她第一天织一尺,最后一天织五尺,也织了三十天,由此可知,姑娘和妇女所织布的总长度是相等的,妇女所织的布每天减少的数量与姑娘织布每天增加的布的数量是相等的,因此每天两人共织的布为六尺,三十天共织6×30=180尺,每人织90尺。

这题的巧妙之处在于将抽象的一组等差数列求和转化为形象生动的形似回文数一般的对称求和方法,也和物理学中所说的正物质和反物质有异曲同工之妙。

其实做为等差数列求和都可以用这种思路解答,运用对称的思维来理解等差数列比单纯讲求和公式要形象、生动的多。

二、从轴对称图形中发现对称原理的运用根据轴对称图形的一半和对称轴可以精确的画出轴对称图形的另一半图形,这是在教学了轴对称图形后常见的习题。

在数学中,轴对称图形同时也为人们研究数学提供了某些启示,例如它在博弈问题中也常运用这一原理。

如:桌面上有21个棋子,排成一排,你一次可以拿一粒也可以拿两粒棋子,甚至可以拿三个棋子。

想拿哪里的棋子都行,不必按顺序拿,但拿两粒或三粒棋子时必须是相邻的即中间没有空隔或其他棋子,问:“两人轮流拿谁拿到最后一粒谁赢,你如果先拿能保证赢吗?”这题看上去挺复杂,按排列组合众多拿法要想一一分析清楚太费力,其实运用对称原理就非常简单,先拿的人只要先拿走中间一粒,即第十一粒棋,这样左、右两边各剩十粒,这样对方拿左边的棋子,你就拿右边的棋子,并且个数和位置和他对称,如果对方拿右边的棋子,你就按照他拿左边的棋子,总之只要保持左、右两边的棋子剩下的个数和位置一样,只要他有的拿,你也有的拿,因此最后一粒必然落入你手中,因此先拿必胜,如果棋子是20粒(偶数个),你就先拿中间的两粒,让左右两边各剩9粒棋子,这样你就必胜。

类似的题目还有如:用若干一元的硬币两人轮流将它摆在一个大圆盘上,要求硬币之间不能重叠,谁摆不下谁算输,是先摆赢还是后摆赢?显然根据对称原理,先摆的人只要先占住圆心,以后对方摆哪你就照他在对面对称着摆出,只要他有空间摆,那么在相对称的地方也必定有空间摆,直至对方摆不下为止,对方先输。

相关主题