当前位置:文档之家› 关于伴随矩阵性质的探讨

关于伴随矩阵性质的探讨

关于伴随矩阵性质的探讨1引言矩阵是高等代数的重要组成部分,是许多数学分支研究的重要工具.伴随矩阵作为矩阵中较特殊的一类,其理论和应用有自身的特点.设n 阶矩阵⎪⎪⎪⎭⎫ ⎝⎛=n n n a a a a A 1111,()n j i 2,1,= 是A中元素ij a 的代数余子式,称矩阵⎪⎪⎪⎭⎫ ⎝⎛=nn n n A A A A A 1111*为A 的伴随矩阵[]1(176)P .在大学本科的学习中,伴随矩阵只是作为求解逆矩阵的工具出现的,并没有进行深入的研究.本文分类研究了伴随矩阵的性质,并给出了证明过程,得到一系列有意义的结果.从而使高等代数中的重要概念——伴随矩阵比较完整地呈现在我们面前.2伴随矩阵的性质2.1伴随矩阵的基本性质 性质1[]2(5253)P P - E A AA A A ==**性质2 若0=A ,则0*=AA . 性质3 1*-=n AA .证明 由性质E A AA =*得E A AA =*, 从而 nA A A =*,两边同时左乘1-A得1*-=n AA ,即为所证.2.2可逆性质性质4 若A 可逆,则1*-=A A A (或*11A A A--=).证明 由性质1,E A AA =*两边同时左乘1-A 得E A A AA A 1*1--=,即 *111*A A AA A A ---==.性质5 若A 可逆,则*A 可逆且()A A A11*--=.证明 若A 可逆,即0,01*≠=≠-n AA A ,从而*A 可逆又有性质4得()()A A A A A1111*----==.性质6[3](124)P 若A 可逆,则()A A An 2**-=.证明 由性质1得()E A AA ****=,A 可逆,*A 也可逆,两边同时左乘()1*-A 得()()A AAA AA A A n n 2111****----===.性质7[4](181183)P P - 若A 可逆,则()()*11*--=A A .证明 由性质5得()A A A 11*--=, 由性质1得()E A A A 1*11---=. 两边同时左乘A 得()()1*1*1---==A A A A .2.3运算性质性质8 若A 可逆,k 为非零常数,则()*1*A k kA n -=.证明 由性质1得()()E kA kA kA =*,两边同时左乘()1-kA 得()()()*111111*A k A A k A k A k kA kA kA n n n ------====.性质9 若,A B 均为n 阶可逆方阵,则()***A B AB =.证明 由已知条件可得0≠A ,0≠B .从而可得0≠AB 也就是AB 可逆得()()()*11*11AB BAAB ABAB ----==,又因为()*1*1111A A B B A B AB -----==,由以上可得()***.AB B A =推论 若1321,,,,-t t A A A A A 均为同阶可逆矩阵,则()*1*2*3*1**1321A A A A A A A A A A t t t t --=.2.4特殊矩阵的伴随矩阵的性质性质10 若A 对称,则*A 亦对称.证明 因为A 是对称的,即,TA A =从而可得()()()()()**111*A A A A A A A A A TTTTT=====---,所以*A 是对称的.性质11 A 可逆,若*A 为对称矩阵,则A 为对称矩阵. 证明由题中所给条件可得()()()()T TT A A A A AA AA =⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡===--------11*11*1111.性质12 单位矩阵E 和零矩阵O 的伴随矩阵均为本身,即00,**==E E . 性质13 若A 可逆,则()()TT A A **=.证明 由性质1得()E A A A T T T=*,又由A 可逆,故T A 也可逆,两边同时左乘()1-T A 得()()()()()TTTT T T A A A A A A A A *111*====---.性质14 A 为n 阶反对称矩阵,则当n 为奇数时,*A 是对称矩阵;当n 为偶数时,*A 为反对称矩阵.证明 因()()*1*1A A n --=-,A A T -=由上一性质可知,()()()()*1***1A A A A n T T--=-==,所以,当n 为奇数时,()**A A T=,此时*A 是对称矩阵;当n 为偶数时,()**A A T-=,此时*A 是反对称矩阵.2.5伴随矩阵秩的性质性质14 设A 为n ()2≥n 阶方阵,证明 ⎪⎩⎪⎨⎧-<-===1)(,01)(,1)(,)(*n A r n A r nA r n A r .证明 当秩n A =时,即A 为非奇异时,由于01*≠=-n AA ,故*A 也是非奇异的,即秩 n A =*;当秩1A n =-时,有0A =,于是*0AA A E ==,从而,秩1*≤A .又秩1A n =-,所以至少有一个代数余子式0,ij A ≠ 从而又有秩* 1.A ≥于是,秩*1.A =当秩1A n <-时, 0*=A ,即此时秩*0A =.性质15 设n 阶方阵A 是可逆的,那么*A 可表示为A 的多项式.证明 A 的多项式为()0111a a a f n n n ++++=--λλλλ .因A 可逆,所以()010≠-=A a n由哈密顿-凯莱定理知()0=A f ,即00111=++++--E a A a A a A n n n ,故()E A E a A a A a n n n =+++----12111 , 右乘*A ,得()*1211A E a A a A a A n n n =+++---- , 故()()E a A a AA n n n n 12111*1+++-=---- .2.6伴随矩阵特征值的性质性质16 若λ为n n A ⨯的一个特征值,则1A λ-为*A 的特征值.证明 由条件知,有非零向量X 满足X AX λ=.则111,X A X A X X λλ---==. 从而11A A X A X λ--=,*1A X A X λ-=,也就是1A λ-为*A 的一个特征值. 2.7自伴随矩阵定义 若*A A =,则称A 为自伴随矩阵.性质17[]5()15P 关于自伴随矩阵的性质:(1) 零矩阵,单位矩阵均为自伴随矩阵;(2) 两自伴随矩阵之积为自伴随矩阵的充分条件为两矩阵可换; (3) 若A 为自伴随矩阵,则()21≥=-n A An ;(4) 若A 为自伴随矩阵,则(1,2,)kA k =也为自伴随矩阵;(5) 若A 为非奇异自伴随矩阵,则1A -也为自伴随矩阵;(6) 若A 为自伴随矩阵,则TA 也为自伴随矩阵. 2.8 伴随矩阵的继承性性质18 设,A B 为n 阶矩阵,则有 (1)若A 与B 等价,则*A 与*B 也等价;(2)若A 与B 合同,且A 与B 可逆,则*A 与*B 也合同;证明 因为矩阵A 与B 合同,则存在可逆矩阵P ,使B AP P T =,又A 与B 可逆,则()1111----=B P A P T,即11--=B C A C T ,其中()TP C 1-=,又B A P =2,则()()11**--=B B C P A A CP T,即**B Q A Q T =,其中C P Q =是可逆矩阵,故*A 与*B 也合同.(3)若A 与B 相似,则*A 与*B 也相似;证明 当A 可逆时,因为A 与B 相似,则B A =,且存在可逆矩阵P ,使得B AP P =-1.又A 与B 可逆,上式两边取逆,得111---=B P A P ,则有()111---=BB P A A P,即**1B P A P =-,说明*A 与*B 相似.当A 不可逆时,由B AP P =-1知,B 也不可逆,所以必存在0>δ,当()δ,0∈t 时,使0,0≠+≠+B tE A tE ,令.,11B tE B A tE A +=+=那么0,011≠≠B A ,且()()PA PP A tE PAP P P tE P AP P tE B tE B 1111111-----=+=+=+=+=则又由,*11*1P A P B -=即()()P A tE P B tE *1*+=+-,上式两端矩阵的元素都是关于t 的多项式,由于当()δ,0∈t 时,对应的元素相等,所以对于任意t 上式都成立.取0=t 时,**1B P A P =-,即*A 与*B 相似.(4)若A 能相似对角化,则*A 也能相似对角化; (5)若A 是正交矩阵,则*A 也是正交的.证明 因为A 为正交矩阵,则E A A A T==,12,于是()()()()()()EE AA AA A AA A A A A A A A T T TTT======--------1111211211**故*A 也是正交矩阵.3 相关例题例1设A 为三阶矩阵,A 的特征值为1,3,5.试求行列式*2A E -. 解 因为135,A =⨯⨯由性质16知道,*A 的特征值分别为1553.,, 于是*2A E -的特征值分别为15213523,32 1.-=-=-=, 故*2133139A E -=⨯⨯=.例2 求矩阵A 的伴随矩阵*A ,其中110430103A -=-. 解 矩阵A 的特征多项式为:()25423-+-=-=λλλλλA E f因 020a =-≠,所以A 可逆.由性质知()()11302826541213*---=+--=-E A AA .例3 已知三阶矩阵A 的逆矩阵为1111121113A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,试求伴随矩阵*A 的逆矩阵.解 由性质5得()A A A11*--=,由()11A A --=用伴随矩阵法或初等行变换易求得⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡----=2102101121125A ,又因为23111211111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-A,从而可得()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----===---101022125111*A A A A A .例4 若A ,B 均为偶数阶同阶可逆矩阵,且有相同的伴随矩阵,试证A B =.证明 由性质4得,1*-=A A A , 1*-=B B B ,可知11A A B B --=, 也就是11--=B B A A ,11n n A A B B --=, 由11n n AB --=(n 为偶数可得1n -为奇数)从而B A =.例5 已知三阶矩阵()33⨯=ij a A 满足条件:(1)()3,2,1,==j i A a ij ij ,其中ij A 是ij a 的代数余子式;(2)011≠a ,求A .解 由条件(1)和性质3知,T A A =*,则2*A A AA T===,所以0=A 或1=A .又0212132122111112121111≠++++=+++=n n n a a a a A a A a A a A ,故1=A .参考文献:[1] 北京大学数学系几何与代数教研室代数小组.高等代数[M].北京:高等教育出版,1988 [2] 同济大学数学教研室.线性代数3版[M].北京:高等教育出版,1999 [3] 钱吉林,高等代数题解精粹[M].北京:中央民族大学出版社,2002[4] 蔡剑芳,钱吉林,李桃生.高等代数综合题解[M].武汉:湖北科技出版社,1986 [5] 王航平,伴随矩阵的若干性质.中国计量学院学报[J].2004,03 [6] 张禾瑞,高等代数[M].北京:人民教育出版社,1979 [7] 陈景良,陈向晖.特殊矩阵[M].北京:清华大学出版社,2001 [8] 卢刚,线性代数2版[M].北京:高等教育出版社,2004 [9] 王品超,高等代数新方法[M].济南:山东教育出版社,2001 [10] 扬子胥,高等代数习题解[M].济南:山东科学技术出版社,2003 [11] Farkas L,Farkas M.线性代数及其应用[M].北京:人民教育出版社,1981。

相关主题