当前位置:文档之家› 第七章 发酵过程控制3-温度

第七章 发酵过程控制3-温度


温度变化及其控制
3、蒸发热Q蒸发
通气时,引起发酵液的水分蒸发,水分蒸发的热 量叫蒸发热。此外,排气也会带走部分热量叫显 热Q显热,显热很小,一般可以忽略不计。
4、辐射热Q辐射
发酵罐内温度与环境温度不同,发酵液中有部分 热通过罐体向外辐射。辐射热的大小取决于罐温 与环境的温差。冬天大一些,夏天小一些,一般 不超过发酵热的5%。 Q发酵=Q生物+Q搅拌-Q蒸发-Q辐射
温度变化及其控制
1、生物热Q生物
在发酵过程中,菌体不断利用培养基中的营养物质,
将其分解氧化而产生的能量,其中一部分用于合成高
能化合物(如ATP)提供细胞合成和代谢产物合成需 要的能量,其余一部分以热的形式散发出来,这散发 出来的热就叫生物热。
温度变化及其控制
生物热与发酵类型有关
微生物进行有氧呼吸产生的热比厌氧发酵产生的热多 一摩尔葡萄糖彻底氧化成CO2和水 好氧:产生287.2千焦耳热量, 183千焦耳转变为高能化合物 104.2千焦以热的形式释放
温度变化及其控制
第六节
温度变化及其控制
一、温度对生长的影响
1. 不同微生物的生长对温度的要求不同,根据它们对 温度的要求大致可分为四类:嗜冷菌适应于0~200C生 长,嗜温菌适应于15~430C生长,嗜热菌适应于37~ 650C生长,嗜高温菌适应于650C以上生长
温度变化及其控制
2. 每种微生物对温度的要求可用最适温度、最高 温度、最低温度来表征。在最适温度下,微生物 生长迅速;超过最高温度微生物即受到抑制或死 亡;在最低温度范围内微生物尚能生长,但生长 速度非常缓慢,世代时间无限延长。 3. 在最低和最高温度之间,微生物的生长速率随温 度升高而增加,超过最适温度后,随温度升高,生 长速率下降,最后停止生长,引起死亡。
温度变化及其控制
(二)最适温度的选择
1、根据菌种及生长阶段选择 微生物种类不同,所具有的酶系及其性质不同,所要 求的温度范围也不同。
如黑曲霉生长温度为370C,
谷氨酸产生菌棒状杆菌的生长温度为30~320C,
青霉菌生长温度为300C。
温度变化及其控制
根据生长阶段选择
在发酵前期由于菌量少,发酵目的是要尽快达到大量的菌体, 取稍高的温度,促使菌的呼吸与代谢,使菌生长迅速; 在中期菌量已达到合成产物的最适量,发酵需要延长中期,从 而提高产量,因此中期温度要稍低一些,可以推迟细胞衰老。 因为在稍低温度下氨基酸合成蛋白质和核酸的正常途径关闭得 比较严密,有利于产物合成。
厌氧:产生22.6千焦耳热量,
9.6千焦耳转变为高能化合物 13千焦以热的形式释放
温度变化及其控制
培养过程中生物热的产生具有强烈的时间性。
培养初期:菌体处于适应期,菌数少,呼吸作用缓慢,产生 热量较少。 对数生长期:菌体繁殖迅速,呼吸作用激烈,菌体也较多, 所以产生的热量多,温度上升快,必须注意控制温度。 培养后期:菌体已基本上停止繁殖,主要靠菌体内的酶系进 行代谢作用,产生热量不多,温度变化不大,且逐渐减弱。
温度变化及其控制
变温培养的正交设计
温度变化及其控制
温度变化及其控制
结论:前60h按31℃控制,缩短了对数期使发酵
提前转入生产阶段,同时菌丝体已有相当量的积 累,为大量分泌抗生素提供了物质基础
60小时后将罐温降至3O℃使与抗生素合成有关的 酶的活性增强,抗生素分泌量有所增加,同时温 度下降使分泌期的延长有利于进一步积累抗生素 发酵进入后期罐温再回升至31℃ 使生产菌在发酵 的最后阶段最大限度的合成和排出次级代谢产物。
培养条件适宜,如营养丰富,通气能满足,那么前期
温度可髙些,以利于菌的生长。
总的来说,温度的选择根据菌种生长阶段ቤተ መጻሕፍቲ ባይዱ培养条件
综合考虑。要通过反复实践来定出最适温度。
温度变化及其控制
三、发酵过程引起温度变化的因素 (一)发酵热Q发酵
发酵热是引起发酵过程温度变化的原因。
发酵热:发酵过程中释放出来的净热量。包括在 发酵过程中产生菌分解基质产生热量(生物热), 机械搅拌产生热量(搅拌热),而罐壁散热、水 分蒸发、空气排气带走热量。这各种产生的热量 和各种散失的热量的代数和就叫做净热量。发酵 热引起发酵液的温度上升。
温度变化及其控制
4. 微生物受高温的伤害比低温的伤害大,即 超过最高温度,微生物很快死亡;低于最低
温度,微生物代谢受到很大抑制,并不马上
死亡。这就是菌种保藏的原理。
温度变化及其控制
二、微生物与温度相关性的原理
1、微生物对温度的要求不同 与它们的膜结构物理化 学性质有密切关系 根据细胞膜的液体镶嵌模型,细胞在正常生理条件 下,膜中的脂质成分应保持液晶状态,只有当细胞膜 处于液晶状态,才能维持细胞的正常生理功能,使细
温度变化及其控制
(二)发酵热的测定
有二种发酵热测定的方法。一种是用冷却水进 出口温度差计算发酵热。在工厂里,可以通过 测量冷却水进出口的水温,再从水表上得知每 小时冷却水流量来计算发酵热。 Q发酵=GCm(T出-T进) Cm——水的比热 G——冷却水流量 另一种是根据罐温上升速率来计算。先自控,让发 酵液达到某一温度,然后停止加热或冷却,使罐温 自然上升或下降,根据罐温变化的速率计算出发酵 热。
温度变化及其控制
温度变化及其控制

微生物生长温度

微生物对温度的要求不同与它们的膜结构有关
微生物的生长温度与细胞膜的液晶温度范围相 一致
温度变化及其控制
温度对发酵的影响:
温度影响反应速率 温度影响发酵方向
选最 适 温 度 择的
根据菌种
生长阶段选择 根据培养条件选择 菌种的生长情况
温度变化及其控制
最适温度选择要根据菌种与发酵阶段做试验。
温度变化及其控制
例:林可霉素发酵的变温培养 主要问题:
接种后10h左右已进入对数生长期,在40h左右 对数生长期基本完成,在50h左右转入生产期 如何维持适度的菌体浓度和延长分泌期? 适当降低培养温度可以延缓菌体的衰老和维持相 当数量的有强生产能力的菌丝体存在
胞处于最佳生长状态
微生物的生长温度与细胞膜的液晶温度范围相一致。
温度变化及其控制
液晶状态:指某些有机物在发生固相到液相转变时的 过渡状态。 由固态转变为液晶态的温度称为熔点,以T1表示; 由液晶态转变为液态的温度称为清亮点,以T2表示。 T1与T2之间的温度称为液晶温度范围。 那么为什么不同微生物对温度的要求不同呢?根据细 胞膜脂质成分分析表明,具有不同最适生长温度的微 生物,其膜内磷脂组成有很大区别。嗜热菌只含饱和 脂肪酸,而嗜冷菌含有较高的不饱和脂肪酸。
如果培养前期温度上升缓慢,说明菌体代谢缓慢,发酵不正 常。如果发酵前期温度上升剧烈,有可能染菌,此外培养基 营养越丰富,生物热也越大。
温度变化及其控制
2、搅拌热Q搅拌
在机械搅拌通气发酵罐中,由于机械搅拌带动发酵
液作机械运动,造成液体之间,液体与搅拌器等设
备之间的摩擦,产生可观的热量。搅拌热与搅拌轴 功率有关,可用下式计算: Q搅拌=Pg×860×4186.8(焦耳/小时) Pg——搅拌轴功率 4186.8——机械能转变为热能的热功当量
温度变化及其控制
发酵后期,产物合成能力降低,延长发酵周期没有必要, 就又提高温度,刺激产物合成到放罐。如四环素生长阶 段28 ℃ ,合成期26 ℃后期再升温;黑曲霉生长37℃, 产糖化酶32~34 ℃ 。但也有的菌种产物形成比生长温 度高。如谷氨酸产生菌生长30~32 ℃ ,产酸34~37 ℃ 。
温度变化及其控制
四、利用温度控制提高产量
例1 利用热冲击处理技术提高发酵甘油的产量 背景: (1)酵母在比常规发酵温度髙10~200C的温度下 经受一段时间刺激后,胞内海藻糖的含量显著增加。 (2)Lewis发现热冲击能提高细胞对渗透压的耐受 力 (3)Toshiro发现热冲击可使胞内3-磷酸甘油脱氢 酶的活力提高15~25%,并导致甘油产量提高
温度变化及其控制
2、根据培养条件选择
温度选择还要根据培养条件综合考虑,灵活选择。 通气条件差时可适当降低温度,使菌呼吸速率降低 些,溶氧浓度也可髙些。 培养基稀薄时,温度也该低些。因为温度高营养利 用快,会使菌过早自溶。
温度变化及其控制
3、根据菌生长情况
菌体生长速度快,维持在较高温度时间要短些; 菌体生长速度慢,维持较高温度时间可长些;
发酵过程引起温度变化的因素 发酵热是引起发酵过程温度变化的原因 Q发酵=Q生物+Q搅拌-Q蒸发-Q辐射 生物热的定义,产生的原因:基质代谢。它 与菌种、发酵类型、生长阶段、营养条件有 关 搅拌热与搅拌功率有关
温度变化及其控制
2、与蛋白质结构密切相关
通过对嗜冷酶的蛋白质模型和X-射线衍射分析表 明,嗜冷酶分子间的作用力减弱,与溶剂的作用加 强,酶结构的柔韧性增加,使酶在低温下容易结合 底物底物进行催化作用。
温度变化及其控制
3、与蛋白质合成能力有关
嗜冷菌具有在0℃合成蛋白质的能力。这是由于 其核糖体、酶类以及细胞中的可溶性因子等对 低温的适应,蛋白质翻译的错误率最低。
温度变化及其控制
二、温度的影响与控制
(一)温度对发酵的影响 1、温度影响微生物各种酶催化反应速率 发酵过程的反应速率实际是酶反应速率,酶反应有 一个最适温度。 阿累尼乌斯: d(lnK/dt)=△E/RT2 在生物学范围内温度每升高10℃,生长速度通常 就加快一倍;温度每升高10℃酶反应速度增加2~3倍;
许多中温菌不能在O0C合成蛋白质,一方面是由
于其核糖体对低温的不适应,翻译过程中不能 形成有效的起始复合物,另一方面是由于低温 下细胞膜的破坏导致氨基酸等内容物的泄露。
温度变化及其控制
4、合成冷休克蛋白
低温微生物适应低温的另一机制是合成冷休克蛋白
将大肠杆菌从370C突然转移到100C条件时细胞中会 诱导合成一组冷休克蛋白,它们对低温的生理适应 过程中发挥着重要作用,检测嗜冷酵母的冷休克反 应,发现冷刺激后冷休克蛋白在很短时间内大量产 生。 耐冷菌由于生活在温度波动的环境中,它们必须忍 受温度的快速降低,这与它们产生的冷休克蛋白是 密切相关的。
相关主题