自动控制原理第六章课后习题答案(免费)线性定常系统的综合6-1 已知系统状态方程为:()100102301010100x x uy x•-⎛⎫⎛⎫ ⎪ ⎪=--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=试设计一状态反馈阵使闭环系统极点配置为-1,-2,-3.解: 由()100102301010100x x uy x •-⎛⎫⎛⎫ ⎪ ⎪=--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=可得:(1) 加入状态反馈阵()012K k k k =,闭环系统特征多项式为:32002012()det[()](2)(1)(2322)f I A bK k k k k k k λλλλλ=--=++++-+--+-(2) 根据给定的极点值,得期望特征多项式:*32()(1)(2)(3)6116f λλλλλλλ=+++=+++(3) 比较()f λ与*()f λ各对应项系数,可得:0124,0,8;k k k ===即:()408K =6-2 有系统:()2100111,0x x u y x•-⎛⎫⎛⎫=+ ⎪ ⎪-⎝⎭⎝⎭= (1) 画出模拟结构图。
(2) 若动态性能不能满足要求,可否任意配置极点? (3) 若指定极点为-3,-3,求状态反馈阵。
解(1) 模拟结构图如下:(2) 判断系统的能控性;0111c U ⎡⎤=⎢⎥-⎣⎦满秩,系统完全能控,可以任意配置极点。
(3)加入状态反馈阵01(,)K k k =,闭环系统特征多项式为:()2101()det[()](3)22f I A bK k k k λλλλ=--=+++++ 根据给定的极点值,得期望特征多项式:*2()(3)(3)69f λλλλλ=++=++比较()f λ与*()f λ各对应项系数,可解得:011,3k k ==即:[1,3]K =6-3 设系统的传递函数为:(1)(2)(1)(2)(3)s s s s s -++-+试问可否用状态反馈将其传递函数变成:1(2)(3)s s s -++若能,试求状态反馈阵,并画出系统结构图。
解:若希望采用状态反馈将(1)(2)(1)(2)(3)s s s s s -++-+变成1(2)(3)s s s -++,则根据状态反馈不改变系统传递函数的零点的原理,可知经过状态反馈之后的系统传递函数必为()()212(2)(3)s s s s -+++。
因此期望的特征多项式为232(2)(3)71612λλλλλ++=+++由于原系统的传递函数为232(1)(2)2(1)(2)(3)256s s s s s s s s s s -++-=+-++--,则状态反馈阵[]18215K =。
6-4 是判断下列系统通过状态反馈能否镇定。
210402105,00200517050A b -⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪⎪ ⎪==- ⎪ ⎪- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭解:该系统为约旦标准型,很显然,其不能控不能所对应的特征值具有负实部,是渐进稳定的,因此可以通过状态反馈进行镇定。
6-5 设系统状态方程为:01000010100010001101x x u •⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭(1) 判断系统能否稳定。
系统能否镇定。
(2) 若能,试设计状态反馈使之稳定。
解:(1)()4100010det 000100110I A λλλλλλλ-⎡⎤⎢⎥⎢⎥-===⎢⎥-⎢⎥⎣⎦= 原系统处于临界稳定状态。
010110100101110110c U ⎡⎤⎢⎥⎢⎥=⎢⎥--⎢⎥--⎣⎦,可知矩阵满秩,系统完全能控,所以可以通过状态反馈实现系统的镇定。
(2)自定义期望的系统极点,然后采用极点配置的方法进行即可。
6-6 设计一前馈补偿器,使系统:1112()11(1)s s W s s s s ⎛⎫ ⎪++⎪= ⎪ ⎪+⎝⎭解耦,且解耦后的极点为-1,-1,-2,-2.解:根据题意可知解耦后的系统传递函数矩阵为()()212101()102s W s s ⎛⎫⎪+ ⎪= ⎪⎪ ⎪+⎝⎭, 则前馈补偿器为()()()12211101121110(1)2d s s s W s s s s s -⎛⎫⎛⎫ ⎪ ⎪+++ ⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭+⎝⎭, 所以()()()()()()2232122122d s s s s W s s s s s s +⎛⎫- ⎪++⎪= ⎪+- ⎪ ⎪+++⎝⎭6-7 已知系统:100100230110101100011x x u y x•-⎛⎫⎛⎫ ⎪ ⎪=--+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎛⎫= ⎪⎝⎭(1) 判别系统能否用状态反馈实现解耦。
(2) 设计状态反馈使系统解耦,且极点为-1,-2,-3. 解:原系统的传递函数矩阵为:()()()()1101001010002301011101011011012s W s C sI A B s s s s s --+⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=-=+⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥---⎣⎦⎣⎦⎡⎤⎢⎥+⎢⎥=⎢⎥⎢⎥++⎣⎦系统存在耦合。
下面判断系统能否通过状态反馈进行解耦:[][]0110101011001c A B ⎡⎤⎢⎥==≠⎢⎥⎢⎥-⎣⎦0,所以10d =;[][][][]02121001101000110010011023011010101c A B c A B ⎡⎤⎢⎥===⎢⎥⎢⎥-⎣⎦-⎡⎤⎡⎤⎢⎥⎢⎥=--=≠⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦00所以21d =。
因此1212100122d d c A D c A ⎡⎤⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦,1010010011221001E DB ⎡⎤⎡⎤⎡⎤⎢⎥===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎢⎥-⎣⎦, 可知E 为非奇异阵,所以该系统不能通过状态反馈的办法实现解耦。
6-8 已知系统:()01000110x x u y x•⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭= 试设计一状态观测器,使观测器的极点为-r,-2r(r>0). 解 (1) 检验能观性因10,,01o c U cA ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭满秩系统能观可构造全维观测器.(2) 原系统的对偶系统为:[]001,,01100TT TA c b ⎡⎤⎡⎤===⎢⎥⎢⎥⎣⎦⎣⎦()201det ,0,0T I A a a λλ-===所以另观测器的期望多项式为()()22232r r r r λλλλ++=++则2012,3a r a r **==所以()22,3T KE r r ==下面求转换矩阵1100101100110T TT T TTP A cc A cc P -⎡⎤⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤=⎢⎥⎣⎦所以原系统对应的()1222012,3321032TTE E P r r r r r E r -⎡⎤⎡⎤=⋅==⎢⎥⎣⎦⎣⎦⎡⎤=⎢⎥⎣⎦对应的全维观测器为:223103ˆˆ()2012rr x A Ec x bu Ey x u y r r -⎛⎫⎛⎫⎛⎫=-++=++ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭6-9* 已知系统:()21001110x x uy x•-⎛⎫⎛⎫=+ ⎪ ⎪-⎝⎭⎝⎭= 设状态变量2x 不能测取,试设计全维和降维观测器,使观测器极点为-3,-3.解:[]201,,01110TT TA c b -⎡⎤⎡⎤===⎢⎥⎢⎥-⎣⎦⎣⎦()201det 32,2,3T I A a a λλλ-=++==所以另观测器的期望多项式为()22369λλλ+=++则019,6a a **==所以()7,3T KE ==下面求转换矩阵1101131100111T TT T TTP A cc A cc P -⎡⎤⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤=⎢⎥-⎣⎦所以原系统对应的()[]1017,3341134TTE E P E -⎡⎤=⋅==⎢⎥-⎣⎦⎡⎤=⎢⎥⎣⎦对应的全维观测器为:5103ˆˆ()4114x A Ec x bu Ey x u y -⎛⎫⎛⎫⎛⎫=-++=++ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭6-11* 设受控对象传递函数为31s : (1)设计状态反馈,使闭环极点配置为13,2--± 解:期望的特征多项式为()3201211344322223,4,4j j a a a λλλλλλ***⎛⎫⎛⎫++-++=+++ ⎪⎪⎝⎭⎝⎭=== 原系统0120,0,0a a a ===所以[]344K=。