遥感图像的几何校正
遥感图像的精加工处理
在粗加工处理的基础上,采用地面控制点(GCP) 的方法进一步提高影像的几何精度 几何处理的两个环节
1.
2.
像素坐标的变换——解决位置问题 多项式模型 灰度重采样——解决亮度问题 最邻近像元采样法 双线性内插法 双三次卷积重采样法
遥感数字图像的几何处理过程
准备 工作 输入原 始图象 建立纠 正函数 确定输出图象 的范围
x,y为某像素原始图像坐标 X,Y为同名像素的地面(或地图)坐标
建立两图像 像元点之间 的对应关系
第2步:选择控制点
控制点的选取要求
影像上的明显地物点 影像中均匀分布 要满足一定的数量要求
地面控制点的获取途径
GPS 地形图、矢量图、地图 纠正过的影像(航片、卫片)等等
第2步:选择控制点
多项式的系数利用地面控制点建立的方程组来解算 一般来说GCP的数量至少要大于(n+1)(n+2)/2,n是 多项式的阶数
一次多项式3个以上点 二次多项式6个以上点 三次多项式10个以上点
xi a0 (a1 X i a2Yi ) (a3 X i2 a4 X iYi a5Yi 2 ) (a6 X i3 a7 X i2Yi a8 X i Yi 2 a9Yi 3 ) yi b0 (b1 X i b2Yi ) (b3 X i2 b4 X iYi b5Yi 2 ) (b6 X i3 b7 X i2Yi b8 X i Yi 2 b9Yi 3 )
xi Fx ( X i , Yi ) a0 (a1 X i a2Yi ) (a3 X i2 a4 X iYi a5Yi 2 ) (a6 X i3 a7 X i2Yi a8 X i Yi 2 a9Yi 3 ) yi Fy ( X i , Yi ) b0 (b1 X i b2Yi ) (b3 X i2 b4 X iYi b5Yi 2 ) (b6 X i3 b7 X i2Yi b8 X i Yi 2 b9Yi 3 )
一般多项式纠正变换公式
几何校正实验图像
几何校正实验图像
第3步:位置变换与灰度重采样
确定校正后图像的行列数值,并找到新图像中 每一像元的亮度值 1. 像素坐标的变换,即将图像坐标转变为地图或 地面坐标
第2步:选择控制点
控制点应选取图像上易分辨且较精细的特征点, 如道路交叉点、河流弯曲或分叉处、湖泊边缘、 飞机场、城廓边缘等 地面控制点上的地物不随时间而变化,以保证当 两幅不同时段的图像或地图几何纠正时,可以同 时识别出来 特征变化大的地区应多选一些 图像边缘部分一定要选取控制点,以避免外推 尽可能满幅均匀选取
逐个像元进 行几何变化
灰度的 重采样
输出纠正后 的图象
效果 评价
纠正的函Biblioteka 可有多种选择:多项式方法、共线方 程方法、随机场内插方法等等。其中多项式方法 的应用最为普遍
基于多项式几何校正的基本思想
回避成像的空间几何过程,直接对图像变形的本 身进行数学模拟 把遥感图像的总体变形看作是平移、缩放、旋转 、偏扭、弯曲以及更高次的基本变形的综合作用 结果 把原始图像变形看成是某种曲面,输出图像作为 规则平面。从理论上讲,任何曲面都能以适当高 次的多项式来拟合。用一个适当的多项式来描述 纠正前后图像相应点之间的坐标关系
遥感图像的几何变形
遥感图像通常包含严重的几何变形,一般 分为系统性和非系统性两大类
1.
2.
系统性几何变形是有规律和可以预测的,比如 扫描畸变、地球曲率引起的图像变形、地球自 转的影响等 非系统性几何变形是不规律的,它可以是遥感 器平台的高度、经纬度、速度和姿态等的不稳 定、地形起伏的影响等等,一般很难预测
传感器成像方式引起的图像变形
扫描的瞬时视场由扫描中心向两侧增大 根据遥感平台的位置、遥感器的扫描范围、使用的投影 类型,可以推算其图像不同位置像元的几何位移
传感器外方位元素变化的影响
单个外方位元素引起的图像变形
地球曲率、大气折光和地形起伏引 起的误差
地球自传引起的变形
当卫星由北向南运行 的同时,地球表面也 在由西向东自转 由于卫星图像每条扫 描线的成像时间不同 ,因而造成扫描线在 地面上的投影依次向 西平移,最终使得图 像发生扭曲
遥感图像多项式纠正的步骤
1. 确定纠正的多项式模型
2. 选择若干个控制点,利用有限个地面控制 点的已知坐标,解求多项式的系数
3. 将各像元的坐标代入多项式进行计算,便 可求得纠正后的坐标 4. 位置进行变换,变换的同时进行灰度重采 样 5. 对结果进行精度评定
第1步:确定纠正模型
一般多项式纠正变换公式
内容大纲
几何变形 基于多项式模型的几何校正
多项式校正模型 地面控制点(GDP)的选取 重采样方法
基于共线方程的几何校正 基于有理函数的几何校正
几何变形
遥感图像的几何变形
传感器成像方式引起的图像变形 传感器外方位元素变化的影响 地形起伏引起的像点位移 地球曲率引起的图像变形 大气折射引起的图像变形 地球自转的影响
遥感图像的几何处理
目的
改正系统及非系统性因素引起的图像变形
准确的空间位置
遥感图像的几何处理包含两个层次
粗加工处理 精加工处理
遥感图像的粗加工处理
地面站接收图像后,根据不同平台、传感器 的参数,对地球曲率、地球自转、大气折射 造成的变形进行处理 粗加工处理主要是由地面站完成,不是用户 完成 粗加工处理对传感器内部畸变的改正很有效 粗加工处理后仍有较大的残差
遥感图像的精加工处理
为什么要进行遥感图像的精校正处理?
由于遥感器的位置及姿态的测量精度不高,其加 工处理后仍有较大的残差(几何变形) 一个地物在不同的图像上,位置要一致,才可以 进行融合处理、图像的镶嵌、动态变化监测 如果同一地区的不同时间的影像,不能把它们归 纳到同一个坐标系中去,图像中还存在变形,这 样的图像是不能进行融合、镶嵌和比较的,是没 有用的