当前位置:文档之家› 高中物理动量定理解题技巧讲解及练习题(含答案)

高中物理动量定理解题技巧讲解及练习题(含答案)


p Ft ②
由①②式可得:
F=420N
6.如图,有一个光滑轨道,其水平部分 MN 段和圆形部分 NPQ 平滑连接,圆形轨道的半 径 R=0.5m;质量为 m1=5kg 的 A 球以 v0=6m/s 的速度沿轨道向右运动,与静止在水平轨道 上质量为 m2=4kg 的 B 球发生碰撞,两小球碰撞过程相互作用的时为 t0=0.02s,碰撞后 B 小 球恰好越过圆形轨道最高点。两球可视为质点,g=10m/s2。求:
高中物理动量定理解题技巧讲解及练习题(含答案)
一、高考物理精讲专题动量定理
1.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅 0.2s 的发射时间,就能将质量为 m=5kg 的礼花弹竖直抛上 180m 的高空。(忽略发射底座高 度,不计空气阻力,g 取 10m/s2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于 礼花弹自身重力)
积为 S 的器壁发生碰撞的分子进行分析,结合第(1)(2)两问的结论,推导出气体分子
对器壁的压强 p 与 m、n 和 v 的关系式.
【答案】(1) I 2mv (2) N 1 n.Svt (3) 1 nmv2
6
3
【解析】
(1)以气体分子为研究对象,以分子碰撞器壁时的速度方向为正方向
根据动量定理 I mv mv 2mv
则小物块动量的变化量为:
p mv mg sint mg sin 1 2h m 2gh ,方向沿斜面向下. sin g
点睛:本题需要注意冲量以及动量变化量的矢量性的问题,同时需要掌握牛顿第二定律以 及运动学公式的运用.
9.一垒球手水平挥动球棒,迎面打击一以速度 水平飞来的垒球,垒球随后在离打击 点水平距离为 的垒球场上落地。设垒球质量为 0.81kg,打击点离地面高度为 2.2m,球
(1)人对足球做的功和冲量大小; (2)足球与球框发生第一次碰撞后,足球的速度大小; (3)球框在台面上通过的位移大小。
碰后 A 速度 v1 2m / s
(2)A、B 碰撞过程,对 B 球: Ft0 m2v2
得碰撞过程两小球间的平均作用力大小 F 1000N
7.用动量定理处理二维问题时,可以在相互垂直的 x、y 两个方向上分别进行研究。如图 所示,质量为 m 的小球斜射到木板上,入射的角度是 θ,碰撞后弹出的角度也是 θ,碰撞 前后的速度大小都是 v。碰撞过程中忽略小球所受重力。若小球与木板的碰撞时间为t, 求木板对小球的平均作用力的大小和方向。
所以 F= p +mg= 2 N+0.2×10N=12N,方向竖直向上.
t
0.2
4.如图所示,质量
的小车 A 静止在光滑水平地面上,其上表面光滑,左端有一
固定挡板。可视为质点的小物块 B 置于 A 的最右端,B 的质量
。现对小车 A 施加
一个水平向右的恒力 F=20N,作用 0.5s 后撤去外力,随后固定挡板与小物块 B 发生碰撞。
假设碰撞时间极短,碰后 A、B 粘在一起,继续运动。求:
(1)碰撞前小车 A 的速度;
(2)碰撞过程中小车 A 损失的机械能。
【答案】(1)1m/s(2)25/9J
【解析】
【详解】
(1)A 上表面光滑,在外力作用下,A 运动,B 静止,
对 A,由动量定理得:

代入数据解得:
m/s;
(2)A、B 碰撞过程系统动量守恒,以向右为正方向,
由动量守恒定律得:

代入数据解得:

碰撞过程,A 损失的机械能:

代入数据解得:

5.冬奥会短道速滑接力比赛中,在光滑的冰面上甲运动员静止,以 10m/s 运动的乙运动 员从后去推甲运动员,甲运动员以 6m/s 向前滑行,已知甲、乙运动员相互作用时间为 1s,甲运动员质量 m1=70kg、乙运动员质量 m2=60kg,求:
【答案】(1)20N∙s,方向竖直向下(2) 20 2kg m/s , 与水平方向的夹角为 45°
【解析】
【详解】
(1)物体做平抛运动,则有:
解得:
h 1 gt2 2
t=2s 则物体从抛出到落到地面过程重力的冲量
方向竖直向下。
I=mgt=1×10×2=20N•s
(2)在竖直方向,根据动量定理得 可得,物体落地时竖直方向的分动量
向都与器壁垂直,且速率不变.
(1)求一个气体分子与器壁碰撞一次给器壁的冲量 I 的大小;
(2)每个分子与器壁各面碰撞的机会均等,则正方体的每个面有六分之一的几率.请计算
在 Δt 时间内,与面积为 S 的器壁发生碰撞的分子个数 N;
(3)大量气体分子对容器壁持续频繁地撞击就形成了气体的压强.对在 Δt 时间内,与面
棒与垒球的作用时间为 0.010s,重力加速度为 小。 【答案】900N 【解析】 【详解】
,求球棒对垒球的平均作用力的大
由题意可知,垒球被击后做平抛运动,竖直方向:h= gt2
所以: 水平方向:x=vt
所以球被击后的速度: 选取球被击出后的速度方向为正方向,则:v0=-5m/s 设平均作用力为 F,则:Ft0=mv-mv0 代入数据得:F=900N 【点睛】 此题主要考查平抛运动与动量定理的应用,其中正确判断出垒球被击后做平抛运动是解答 的关键;应用动量定理解题时注意正方向.
I=py-0。
物体落地时水平方向的分动量
py=20kg•m/s
故落地时物体的动量
px=mv0=1×20=20kg•m/s
p px2 py2 20 2kg m/s
设地时动量与水平方向的夹角为 θ,则
tan py 1 px
θ=45°
3.质量为 0.2kg 的小球竖直向下以 6m/s 的速度落至水平地面,再以 4m/s 的速度反向弹
(2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略 不计),测得前后两块质量之比为 1:4,且炸裂时有大小为 E=9000J 的化学能全部转化为 了动能,则两块落地点间的距离是多少?
【答案】(1)1550N;(2)900m 【解析】
【分析】 【详解】 (1)设发射时燃烧的火药对礼花弹的平均作用力为 F,设礼花弹上升时间为 t,则:
【解析】
(1)小物块沿斜面下滑,根据牛顿第二定律可知: mg sin ma ,则: a g sin
根据位移与时间关系可以得到: h 1 g sint2 ,则: t 1 2h
sin 2
sin g
则电场的冲量为: I Eqt Eq 2h ,方向垂直于斜面向下 sin g
(2)根据速度与时间的关系,小物块到达斜面底端的速度为: v at g sin t
(1)碰撞后 A 小球的速度大小。 (2)碰撞过程两小球间的平均作用力大小。 【答案】(1)2m/s (2)1000N 【解析】 【详解】
(1)B
小球刚好能运动到圆形轨道的最高点:
m2 g
m2
v2 R

B
球碰后速度为
v2
,由机械能守恒可知:
1 2
m2v22
2m2 gR
1 2
m2v2
A、B 碰撞过程系统动量守恒: m1v0 m1v1 m2v2
由牛顿第三定律可知,分子受到的冲量与分子给器壁的冲量大小相等方向相反
所以,一个分子与器壁碰撞一次给器壁的冲量为 I 2mv ;
(2)如图所示,以器壁的面积 S 为底,以 vΔt 为高构成柱体,由题设条件可知,柱体内 的分子在 Δt 时间内有 1/6 与器壁 S 发生碰撞,碰撞分子总数为
N 1 n Svt 6
2 解得:v1= 2gh 2102.45 7 m/s,
同理,回弹过程的速度为 5m/s,方向竖直向上, 设向下为正,则对碰撞过程由动量定理可知: mgt-Ft=-mv′-mv 代入数据解得:F=35N 由牛顿第三定律小球对地面的平均作用力大小为 35N,方向竖直向下.
12.一位足球爱好者,做了一个有趣的实验:如图所示,将一个质量为 m、半径为 R 的质 量分布均匀的塑料弹性球框静止放在粗糙的足够大的水平台面上,质量为 M(M>m)的 足球(可视为质点)以某一水平速度 v0 通过球框上的框口,正对球框中心射入框内,不计 足球运动中的一切阻力。结果发现,当足球与球框发生第一次碰撞后到第二次碰撞前足球 恰好不会从右端框口穿出。假设足球与球框内壁的碰撞为弹性碰撞,只考虑球框与台面之 间的摩擦,求:
10.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联
系,从而更加深刻地理解其物理本质.在正方体密闭容器中有大量某种气体的分子,每个
分子质量为 m,单位体积内分子数量 n 为恒量.为简化问题,我们假定:分子大小可以忽
略;分子速率均为 v,且与器壁各面碰撞的机会均等;分子与器壁碰撞前后瞬间,速度方
⑴乙运动员的速度大小;
⑵甲、乙运动员间平均作用力的大小。
【答案】(1)3m/s (2)F=420N
【解析】
【详解】
(1)甲乙运动员的动量守恒,由动量守恒定律公式
得:
m1v1 m2v2 m1v1' m2v2'
(2)甲运动员的动量变化:
v2' 3m/s
对甲运动员利用动量定理:
p m1v1' -m1v1 ①
11.质量为 0.5kg 的小球从 h=2.45m 的高空自由下落至水平地面,与地面作用 0.2s 后,再 以 5m/s 的速度反向弹回,求小球与地面的碰撞过程中对地面的平均作用力.(不计空气阻 力,g=10m/s2) 【答案】35N 【解析】 小球自由下落过程中,由机械能守恒定律可知: mgh= 1 mv12;
h 1 gt2 2
解得
t 6s
对礼花弹从发射到抛到最高点,由动量定理
Ft0 mg(t t0 ) 0
相关主题