当前位置:文档之家› 高中物理动量定理解题技巧及练习题及解析

高中物理动量定理解题技巧及练习题及解析

高中物理动量定理解题技巧及练习题及解析一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。

车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。

【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】(1)设运动过程中摩擦阻力做的总功为W ,则W =-kmgL -2kmgL =-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL 。

(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得mv 1=2mv 222101122kmgL mv mv -=- 221(2)0(2)2k m gL m v -=-由以上各式得010v kgL =所以人给第一辆车水平冲量的大小010I mv m kgL ==2.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。

某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。

(忽略发射底座高度,不计空气阻力,g 取10m/s 2)(1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力)(2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略不计),测得前后两块质量之比为1:4,且炸裂时有大小为E =9000J 的化学能全部转化为了动能,则两块落地点间的距离是多少? 【答案】(1)1550N ;(2)900m 【解析】 【分析】 【详解】(1)设发射时燃烧的火药对礼花弹的平均作用力为F ,设礼花弹上升时间为t ,则:212h gt =解得6s t =对礼花弹从发射到抛到最高点,由动量定理00()0Ft mg t t -+=其中00.2s t =解得1550N F =(2)设在最高点爆炸后两块质量分别为m 1、m 2,对应的水平速度大小分别为v 1、v 2,则: 在最高点爆炸,由动量守恒定律得1122m v m v =由能量守恒定律得2211221122E m v m v =+ 其中1214m m = 12m m m =+联立解得1120m/s v = 230m/s v =之后两物块做平抛运动,则 竖直方向有212h gt =水平方向有12s v t v t =+由以上各式联立解得s=900m3.如图所示,一光滑水平轨道上静止一质量为M =3kg 的小球B .一质量为m =1kg 的小球A 以速度v 0=2m/s 向右运动与B 球发生弹性正碰,取重力加速度g =10m/s 2.求:(1)碰撞结束时A 球的速度大小及方向; (2)碰撞过程A 对B 的冲量大小及方向.【答案】(1)-1m/s ,方向水平向左(2)3N·s ,方向水平向右 【解析】【分析】A 与B 球发生弹性正碰,根据动量守恒及能量守恒求出碰撞结束时A 球的速度大小及方向;碰撞过程对B 应用动量定理求出碰撞过程A 对B 的冲量; 解:(1)碰撞过程根据动量守恒及能量守恒得:0A B mv mv Mv =+2220111222A B mv mv Mv =+ 联立可解得:1m/s B v =,1m/s A v =- 负号表示方向水平向左 (2)碰撞过程对B 应用动量定理可得:0B I Mv =- 可解得:3I N s =⋅ 方向水平向右4.如图所示,固定在竖直平面内的4光滑圆弧轨道AB 与粗糙水平地面BC 相切于B 点。

质量m =0.1kg 的滑块甲从最高点A 由静止释放后沿轨道AB 运动,最终停在水平地面上的C 点。

现将质量m =0.3kg 的滑块乙静置于B 点,仍将滑块甲从A 点由静止释放结果甲在B 点与乙碰撞后粘合在一起,最终停在D 点。

已知B 、C 两点间的距离x =2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s ,两滑块均视为质点。

求:(1)圆弧轨道AB 的半径R;(2)甲与乙碰撞后运动到D 点的时间t 【答案】(1) (2)【解析】 【详解】(1)甲从B 点运动到C 点的过程中做匀速直线运动,有:v B 2=2a 1x 1; 根据牛顿第二定律可得:对甲从A 点运动到B 点的过程,根据机械能守恒: 解得v B =4m/s ;R=0.8m ;(2)对甲乙碰撞过程,由动量守恒定律:;若甲与乙碰撞后运动到D点,由动量定理:解得t=0.4s5.如图所示,质量M=1.0kg的木板静止在光滑水平面上,质量m=0.495kg的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数μ=0.4。

质量m0=0.005kg的子弹以速度v0=300m/s沿水平方向射入物块并留在其中(子弹与物块作用时间极短),木板足够长,g取10m/s2。

求:(1)物块的最大速度v1;(2)木板的最大速度v2;(3)物块在木板上滑动的时间t.【答案】(1)3m/s ;(2)1m/s ;(3)0.5s。

【解析】【详解】(1)子弹射入物块后一起向右滑行的初速度即为物块的最大速度,取向右为正方向,根据子弹和物块组成的系统动量守恒得:m0v0=(m+m0)v1解得:v1=3m/s(2)当子弹、物块和木板三者速度相同时,木板的速度最大,根据三者组成的系统动量守恒得:(m+m0)v1=(M+m+m0)v2。

解得:v2=1m/s(3)对木板,根据动量定理得:μ(m+m0)gt=Mv2-0解得:t=0.5s6.如图所示,木块A和四分之一光滑圆轨道B静置于光滑水平面上,A、B质量m A=m B =2.0kg。

现让A以v0=4m/s的速度水平向右运动,之后与墙壁发生弹性碰撞(碰撞过程中无机械能损失),碰撞时间为t=0.2s。

取重力加速度g=10m/s2.求:①A与墙壁碰撞过程中,墙壁对木块平均作用力的大小;②A 滑上圆轨道B 后,到达最大高度时与B 的共同速度大小. 【答案】(1) F =80N (2) v 1=2m/s 【解析】 【详解】①以水平向左为正方向,A 与墙壁碰撞过程,无机械能能损失,则以原速率弹回,对A ,由动量定理得:Ft =m A v 0﹣m A •(﹣v 0), 代入数据解得:F =80N ;②A 滑上圆轨道B 后到达最大高度时,AB 速度相等,设A 、B 的共同速度为v ,系统在水平方向动量守恒,以向左为正方向,由动量守恒得:m A v 0=(m A +m B )v 1, 代入数据解得:v 1=2m/s ;7.质量为m=0.2kg 的小球竖直向下以v 1=6m/s 的速度落至水平地面,再以v 2=4m/s 的速度反向弹回,小球与地面的作用时间t=0.2s ,取竖直向上为正方向,(取g=10m/s 2).求 (1)小球与地面碰撞前后的动量变化? (2)小球受到地面的平均作用力是多大? 【答案】(1)2kg•m/s ,方向竖直向上;(2)12N . 【解析】(1)取竖直向上为正方向,碰撞地面前小球的动量11 1.2./p mv kg m s ==- 碰撞地面后小球的动量220.8./p mv kg m s ==小球与地面碰撞前后的动量变化212./p p p kg m s ∆=-= 方向竖直向上 (2)小球与地面碰撞,小球受到重力G 和地面对小球的作用力F , 由动量定理()F G t p -=∆ 得小球受到地面的平均作用力是F=12N8.如图所示,质量的小车A 静止在光滑水平地面上,其上表面光滑,左端有一固定挡板。

可视为质点的小物块B 置于A 的最右端,B 的质量。

现对小车A 施加一个水平向右的恒力F =20N ,作用0.5s 后撤去外力,随后固定挡板与小物块B 发生碰撞。

假设碰撞时间极短,碰后A 、B 粘在一起,继续运动。

求:(1)碰撞前小车A 的速度;(2)碰撞过程中小车A 损失的机械能。

【答案】(1)1m/s (2)25/9J 【解析】 【详解】(1)A 上表面光滑,在外力作用下,A 运动,B 静止,对A ,由动量定理得:,代入数据解得:m/s ;(2)A 、B 碰撞过程系统动量守恒,以向右为正方向,由动量守恒定律得:,代入数据解得:, 碰撞过程,A 损失的机械能:,代入数据解得:;9.冬奥会短道速滑接力比赛中,在光滑的冰面上甲运动员静止,以10m/s 运动的乙运动员从后去推甲运动员,甲运动员以6m/s 向前滑行,已知甲、乙运动员相互作用时间为1s ,甲运动员质量m 1=70kg 、乙运动员质量m 2=60kg ,求:⑴乙运动员的速度大小;⑵甲、乙运动员间平均作用力的大小。

【答案】(1)3m/s (2)F=420N 【解析】 【详解】(1)甲乙运动员的动量守恒,由动量守恒定律公式''11221122m v m v m v m v +=+得:'23m/s v =(2)甲运动员的动量变化:'1111-p m v m v ∆= ①对甲运动员利用动量定理:p Ft ∆= ②由①②式可得:F=420N10.用动量定理处理二维问题时,可以在相互垂直的x 、y 两个方向上分别进行研究。

如图所示,质量为m 的小球斜射到木板上,入射的角度是θ,碰撞后弹出的角度也是θ,碰撞前后的速度大小都是v 。

碰撞过程中忽略小球所受重力。

若小球与木板的碰撞时间为∆t ,求木板对小球的平均作用力的大小和方向。

【答案】2cos mv F tθ=∆,方向沿y 轴正方向 【解析】 【详解】小球在x 方向的动量变化为sin sin 0x p mv mv θθ∆=-=小球在y 方向的动量变化为cos (cos )2cos y p mv mv mv θθθ∆=--= 根据动量定理y F t p ∆=∆ 解得2cos mv F tθ=∆,方向沿y 轴正方向11.蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目.一个质量为60kg 的运动员从离水平网面3.2m 高处自由下落,着网后沿竖直方向蹦回到离水平网面高5m 处,已知运动员与网接触的时间为1.2s .(g 取10m /s 2) 求:(1)运动员自由下落到接触网时的瞬时速度.(2)若把网对运动员的作用力当做恒力处理,此力的大小是多少. 【答案】(1)8m /s ,方向向下;(2)网对运动员的作用力大小为1500N . 【解析】 【分析】(1)根据题意可以把运动员看成一个质点来处理,下落过程是自由落体运动,由位移-速度公式即可求出运动员着网前瞬间的速度大小;(2)上升过程是竖直上抛运动,我们可以算出自竖直上抛运动的初速度,算出速度的变化量,由动量定理求出网对运动员的作用力大小. 【详解】(1)从h 1=3.2m 自由落体到床的速度为v 1,则:2112v gh =代入数据可得:v 1=8m /s ,方向向下;(2)离网的速度为v 2,则:22210/v gh m s ==,方向竖直向上, 规定向下为正方向,由动量定理得:mgt -Ft =mv 2-mv 1 可得:21mv mv F mg t-=-=1500N 所以网对运动员的作用力为1500N . 【点睛】本题关键是对运动员的各个运动情况分析清楚,然后结合机械能守恒定律、运动学公式、动量定理列式后联立求解.12.飞机场有一架战斗机,质量3510m =⨯Kg ,发动机的额定功率900P =kW .在战备状态下,一开始启动,发动机就处于额定功率状态,在跑道上经过时间t =15s 运动,速度恰好达到最大速度m 60v =m/s 离开跑道.飞机在跑道上运动过程中,受到的阻力不断增大.求:(1)飞机速度达到最大时,所受到的阻力大小;(2)飞机从启动到最大速度的过程中,飞机所受合外力的冲量的大小; (3)飞机从启动到离开跑道,飞机克服阻力所做的功.【答案】(1)1.5×104N (2)5310I N s =⨯⋅合(3)4.5×106J【解析】(1)飞机速度达到最大时,设飞机的牵引力为F ,受到的阻力是f ,则 F f =P Fv =解得f =1.5×104 N(2)对飞机由动量定理有 0I mv =-合解得5310I =⨯合N.s(3)从开始到离开跑道,设克服阻力做功是W ,则212Pt W mv -=解得W =4.5×106 J【点睛】本题考查功及冲量的计算,要注意明确当飞机达最大速度时,牵引力等于阻力.。

相关主题