当前位置:文档之家› 05刚体的定轴转动习题解答.

05刚体的定轴转动习题解答.

第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。

2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。

()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C。

简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。

3. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω 按图示方向转动。

若将两个大小相等、方向相反但不在同一条直线的力F 1和F 2沿盘面同时作用到圆盘上,则圆盘的角速度ω的大小在刚作用后不久 ( )A. 必然增大B. 必然减少C. 不会改变D. 如何变化,不能确定解:答案是B 。

简要提示:力F 1和F 2的对转轴力矩之和垂直于纸面向里,根据刚体定轴转动定律,角加速度的方向也是垂直于纸面向里,与角速度的方向(垂直于纸面向外)相反,故开始时一选择题3图定减速。

4. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。

简要提示:(1) 由刚体定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21= (2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。

得:)/(222mr J Fr a +=,所以a 1 > a 2。

5. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。

简要提示:由定轴转动定律: α221MR FR =,得:mR F t 4212==∆αθ 所以:m F M W /42=∆=θ 6. 一电唱机的转盘正以ω 0的角速度转动,其转动惯量为J 1,现将一转动惯量为J 2的唱片置于转盘上,则共同转动的角速度应为: ( )A .0211ωJ J J + B .0121ωJ J J + C .021ωJ J D .012ωJ J 解:答案是A 。

简要提示:角动量守恒7. 已知银河系中一均匀球形天体,现时半径为R ,绕对称轴自转周期为T ,由于引力凝聚作用,其体积不断收缩,假设一万年后,其半径缩小为r ,则那时该天体的:( )A.自转周期增加,转动动能增加; B.自转周期减小,转动动能减小; C.自转周期减小,转动动能增加; D. 自转周期增加,转动动能减小。

解:答案是C 。

简要提示: 由角动量守恒,ωω2025252Mr MR =,得转动角频率增大,所以转动周期减小。

转动动能为22k 2020k 5221,5221ωωMr E MR E ==可得E k > E k0。

8. 如图,一质量为m 0的均匀直杆可绕通过O 点的水平轴转动,质量为m的子弹水平射入静止直杆的下端并留在直杆内,则在射入过程中,由子弹和杆组成的系统( )A. 动能守恒B. 动量守恒C. 机械能守恒D. 对O 轴的角动量守恒解:答案是D 。

选择题8图二 填空题1. 半径为30cm 的飞轮,从静止开始以0.5rad ⋅ s –2的角加速度匀加速转动,则飞轮边缘上一点在转过2400时的切向加速度为 ;法向加速度为 。

解:答案是 0.15 m ⋅ s –2; 0.4π m ⋅ s –2。

简要提示:1τs m 15.0-⋅==αr a 。

由221t αθ=,t αω=,得:22n s m 4.0-⋅==πωr a2. 一质量为0.5 k g 、半径为0.4 m 的薄圆盘,以每分钟1500转的角速度绕过盘心且垂直盘面的轴的转动,今在盘缘施以0.98N 的切向力直至盘静止,则所需时间为 s 。

解:答案是 16 s 。

简要提示:由定轴转动定律,α221MR FR =,t αω=, 得: s 1698.024.05.0502=⨯⨯⨯==πωF mR t3 . 一长为l ,质量不计的细杆,两端附着小球m 1和m 2(m 1>m 2),细杆可绕通过杆中心并垂直于杆的水平轴转动,先将杆置于水平然后放开,则刚开始转动的角加速度应为 。

解:答案是 l m m g m m )()(22121+-。

简要提示:由刚体定轴转动定律,α4)(2)(22121l m m l g m g m +=- 得: l m m g m m )()(22121+-=α4. 如图所示,质量为m 0,半径为r 的绕有m 1l m 2 填空题3图细线的圆柱可绕固定水平对称轴无摩擦转动,若质量为m 的物体缚在线索的一端并在重力作用下,由静止开始向下运动,当m 下降h 的距离时,m 的动能与m 0的动能之比为 。

解:答案是 02m m。

简要提示:由r ω=v ,, 得:0k 20m m E E km m =5. 如图所示,A 、B 两飞轮的轴杆在一条直线上,并可用摩擦啮合器C 使它们连结.开始时B 轮静止,A 轮以角速度ωA 转动,设在啮合过程中两飞轮不受其它力矩的作用.当两轮填空题4图填空题5图连结在一起后,共同的角速度为ω.若A 轮的转动惯量为 J A ,则B 轮的转动惯J B =⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽.解:答案是 ωωω/)(-A A J简要提示:两飞轮不受外力矩的作用,所以系统的角动量守恒,得:ωω)(B A A A J J J +=所以: ωωω/)(-=A A B J J6. 一位转动惯量为J 0的花样滑冰运动员以角速度ω 0自转,其角动量为 ;转动动能为 。

当其收回手臂使转动惯量减为J 0 /3时,则其角速度变为 ;转动动能变为 。

解:答案是J 0ω 0; 2/200ωJ ; 3ω 0;2/3200ωJ简要提示:角动量守恒7. 一圆形转台可绕中心轴无摩擦的转动,台上有一辆玩具小汽车相对台面由静止启动,当其绕轴作顺时针圆周运动时,转台将作转动;当汽车突然刹车停止转动的过程中,系统的守恒;而和不守恒。

解:答案是逆时针;角动量;动量;机械能三计算题1. 一细杆绕其上端在竖直平面内摆动,杆与竖直方向的夹角t2cos4ππθ=。

求:(1) 杆摆动的角速度和角加速度;(2) 距上端0.5m处的一点的速度和加速度。

解:(1)tt2sin8dd2ππθω-==;tt 2cos 16d d 3ππωα-==(2)tl 2sin162ππω-==v ;t l a 2cos323τππα-==;t l a 2sin128242n ππω==2. 有一个板长为a 、板宽为b 的均匀矩形薄板,其质量为m 。

求矩形板对于与板面垂直并通过板中心的轴的转动惯量。

解:如图,把矩形薄板分成无限多个小质元,任取一个小质元,其面积为d S ,设薄板的质量面密度为σ,则小质元质量为y x S m d d d d σσ==小质元d m 对于中心轴的转动惯量yx y x m r J d d )(d d 222σ+==整个矩形板的转动惯量)(121)( 121d d )(d 2222222222b a m b a ab y x y x J J a a b b +=+=+==⎰⎰⎰--σσ3. 质量分别为 m 和2m 、半径分别为 r 和2 r 的两个均匀圆盘,同轴地粘在一起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,对转轴的转动惯量为9mr 2 / 2,大小圆盘边缘都绕有绳子,绳子下端都挂一质量为 m 的重物,如图所示.求盘的角加速度的大小.解:隔离物体,分别对重物和转盘受力分析,如图所示。

根据牛顿定律和刚体转动定律,有:a m T mg '='-ma mg T =-2/922ααmr J Tr r T ==-⋅'由转盘和重物之间的运动学关系,有:αr a 2='αr a =联立以上方程,可得:r g 192=α4. 如图所示,半径为r ,转动惯量为J 的定滑轮A 可绕水平光滑轴o 转动,轮上缠绕有不能伸长的轻绳,绳一端系有质量为m 的物体B ,B 可在倾角为θ 的光滑斜面上滑动,求B 的加速度和绳中张力。

解:物体B 的运动满足牛顿第二定律ma T mg =-θsin定滑轮A 的运动满足刚体定轴转动定律αJ Tr =加速度和角加速度之间满足关系αr a =联立解得B 的加速度计算题4图BAJ , roθθsin 22g Jmr mr a +=a 的方向沿斜面向下。

绳中张力为θsin 2mg Jmr J T +=5. 如图所示,质量为m 1的物体可在倾角为θ 的光滑斜面上滑动。

m 1的一边系有劲度系数为k 的弹簧,另一边系有不可伸长的轻绳,绳绕过转动惯量为J ,半径为r 的小滑轮与质量为m 2(>m 1)的物体相连。

开始时用外力托住m 2使弹簧保持原长,然后撤去外力,求m 2由静止下落h 距离时的速率及m 2下降的最大距离。

解:在m 2由静止下落h 距离的过程中机械能守恒,因此有k m 1θJm 2计算题5图ωsin2121)(211222212gh m kh J m m gh m ++++=v式中r v =ω,解得m 2由静止下落h 距离时的速率221212/)sin (2r J m m kh gh m m ++--=θv 2m 下降到最低时,1m 、2m 速率为零,代入上式,得到m 2下降的最大距离gm m kh )sin (212max θ-= 6. 空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0。

质量为 m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .)解:选小球和环为系统.在转动过程中沿转轴方向的合外力矩为零,所以角动量守恒.对地球、小球和环系统机械能守恒。

取过环心 O 的水平面为势能零点.小球到B 点时,有:ωω)(2000mR J J +=(21212122220200B R m J mgR J v ++=+ωωω其中v B 表示小球在 B 点时相对于地面的竖直分速度,也就是它相对于环的速度。

相关主题