当前位置:文档之家› 电磁场与电磁波第二章课后答案

电磁场与电磁波第二章课后答案

第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。

利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。

通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。

至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。

讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。

介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。

关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。

介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。

至于电容和部分电容一节可以从简。

重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅llE 0d微分形式: 0ερ=⋅∇E 0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V V 0d )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d SD⎰=⋅llE 0d微分形式: ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅llE 0d微分形式: ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。

对于两种各向同性的线性介质,则2211εεttD D =2,s n n D D ρ=-12。

在两种介质形成的边界上,则n n D D 21=对于两种各向同性的线性介质,则n n E E 2211εε=3,介质与导体的边界条件:0=⨯E e n ; S n D e ρ=⋅若导体周围是各向同性的线性介质,则ερS n E =;ερϕS n-=∂∂静电场的能量:孤立带电体的能量:Q C Q W e 21212Φ==离散带电体的能量:∑==ni i i e Q W 121Φ分布电荷的能量:l S V W llSS Ve d 21d 21d 21ρϕρϕρϕ⎰⎰⎰===静电场的能量密度:E D ⋅=21e w对于各向同性的线性介质,则221E w e ε=电场力:库仑定律:r rq q e F 24πε'=常电荷系统:常数=-=q e lW F d d常电位系统:常数==ϕlW F e d d题 解2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q '位于q 1及q 2的连线上时,系统处于平衡状态,试求q '的大小及位置。

解 要使系统处于平衡状态,点电荷q '受到点电荷q 1及q 2的力应该大小相等,方向相反,即q q q q F F ''=21。

那么,由1222022101244r r r q q r q q =⇒'='πεπε,同时考虑到d r r =+21,求得 d r d r 32 ,3121==可见点电荷q '可以任意,但应位于点电荷q 1和q 2的连线上,且与点电荷1q 相距d 31。

2-2 已知真空中有三个点电荷,其电量及位置分别为:)0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。

解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则21=r ,32=r ,23=r 。

利用点电荷的场强公式r e E 204rq πε=,其中r e 为点电荷q 指向场点P 的单位矢量。

那么,1q 在P点的场强大小为021011814πεπε==r q E ,方向为()z yr e ee +-=211。

2q 在P点的场强大小为0220221214πεπε==r q E ,方向为()z y xr e e ee ++-=312。

3q 在P 点的场强大小为023033414πεπε==r q E ,方向为y r e e -=3则P 点的合成电场强度为⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛+++-=++=z e e e E E E E y x 312128141312128131211 0321πε2-3 直接利用式(2-2-14)计算电偶极子的电场强度。

解 令点电荷q -位于坐标原点,r 为点电荷q -至场点P 的距离。

再令点电荷q +位于+z 坐标轴上,1r 为点电荷q +至场点P 的距离。

两个点电荷相距为l ,场点P 的坐标为(r,θ,φ)。

根据叠加原理,电偶极子在场点P 产生的电场为⎪⎪⎭⎫⎝⎛-=31134r r q r r E πε考虑到r >> l ,1r e = e r ,θcos 1l r r -=,那么上式变为r r r r r r r r qr r r r q e e E ⎪⎪⎭⎫⎝⎛+-=⎪⎪⎭⎫⎝⎛-=2121102122210))((44πεπε式中()2122212211cos 211cos 2---⎪⎪⎭⎫ ⎝⎛-+=-+=θθr lr l r rl l r r以r l为变量,并将2122cos 21-⎪⎪⎭⎫ ⎝⎛-+θr lr l 在零点作泰勒展开。

由于r l <<,略去高阶项后,得θθcos 1cos 11211r l rr l r r +=⎪⎭⎫ ⎝⎛+=- 利用球坐标系中的散度计算公式,求出电场强度为θr e e E 3030204sin 2cos 1cos 14r ql r ql r r l r q πεθπεθθπε+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∇-⎪⎭⎫ ⎝⎛+∇-=2-4 已知真空中两个点电荷的电量均为6102-⨯C ,相距为2cm , 如习题图2-4所示。

试求:①P 点的电位;②将电量为6102-⨯C 的点电荷由无限远处缓慢地移至P 点时,外力必须作的功。

原理,P 点的解 根据叠加合成电位为()V 105.24260⨯=⨯=rq πεϕ因此,将电量为C 1026-⨯的点电荷由无限远处缓慢地移到P 点,外力习题图2-4必须做的功为()J 5==q W ϕ2-5 通过电位计算有限长线电荷 的电场强度。

解 建立圆柱坐标系。

令先电 荷沿z 轴放置,由于结构以z 轴对称,场强与φ无关。

为了简单起见,令场点位于yz 平面。

设线电荷的长度为L ,密度为l ρ,线电荷的中点位于坐标原点,场点P 的坐标为⎪⎭⎫⎝⎛z r ,2,π。

利用电位叠加原理,求得场点P 的电位为⎰-=224LL lr περϕ式中()220rl z r +-=。

故()2222222202222ln 4 ln 4rL z L z rL z L z r l z l z lLL l+⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+++=⎥⎦⎤⎢⎣⎡+-+--=-περπερϕ因ϕ-∇=E ,可知电场强度的z 分量为22222222ln 4rL z L z rL z L z zzE lz +⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+++∂∂-=∂∂-=περϕyy⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛+-=222221214rL z rL z l περ ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛++-=2202112114r L z r L z r l περ ()()⎪⎪⎭⎫⎝⎛-+-++-=22220224L z rr L z rr r lπερ ()120sin sin 4θθπερ-=rl电场强度的r 分量为22222222ln 4rL z L z rL z L z rrE lr +⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+++∂∂-=∂∂-=περϕ()() ⎝⎛-⎪⎭⎫ ⎝⎛++++++-=22222224r L z L z r L z rl περ()()⎪⎪⎪⎪⎭⎫⎪⎭⎫ ⎝⎛+-+-+-2222222r L z L z r L z r-⎝⎛⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛++-=2202122114r L z r L z r L z r l περ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-++-⎪⎭⎫ ⎝⎛-+22212211r L z r L z r L z⎝⎛-⎪⎪⎭⎫⎝⎛+++-=121120tan 11tan 1tan 1114θθθπερr l⎪⎪⎪⎪⎪⎪⎭⎫⎪⎪⎭⎫ ⎝⎛+++22222tan 11tan 1tan 111θθθ ()()()210cos 1cos 14θθπερ----=rl()210cos cos 4θθπερ-=rl式中2t a na r c ,2t a na r c 21L z r L z r-=+=θθ,那么,合成电强为()()[]r z lre e E 12120cos cos sin sin 4θθθθπερ---=当L →∞时,πθθ→→ ,021,则合成电场强度为r lre E 02περ=可见,这些结果与教材2-2节例4完全相同。

2-6 已知分布在半径为a的半圆周上的电荷线密度πφφρρ≤≤=0 ,sin 0l ,试求圆心处的电场强度。

解 建立直角坐标,令线电荷位于xy 平面,且以y 轴为对称,如习题点电荷ll d ρ图2-6所示。

那么,在圆心处产生的电场强度具有两个分量E x 和E y 。

由于电荷分布以y 轴为对称,因此,仅需考虑电场强度的y E 分量,即φπερsin 4d d d 20al E E l y ==考虑到φρρφsin ,d d 0==l a l ,代入上式求得合成电场强度为y y aae e E 0002008d sin 4ερφφπερπ==⎰2-7 已知真空中半径为a 的圆环上均匀地分布的线电荷密度为l ρ,试求通过圆心的轴线上任一点的电位及电场强度。

解 建立直角坐标,令圆环位于坐标原点,如习题图点电荷ll d ρ2-7所示。

那么,在z 轴上P 点产生的电位为rl l 04d περϕ=根据叠加原理,圆环线电荷在P 点产生的合成电位为()2220202d 4d 41za a l rl rz l al al +===⎰⎰ερπερρπεϕππ习题图2-6习题图2-7y因电场强度ϕ-∇=E ,则圆环线电荷在P 点产生的电场强度为()()232202za az zz l zz+=∂∂-=ερϕe e E2-8 设宽度为W ,面密度为S ρ的带状电荷位于真空中, 试求空间任一点的电场强度。

相关主题