当前位置:文档之家› 关于数项级数敛散性的判定(可编辑修改word版)

关于数项级数敛散性的判定(可编辑修改word版)

n 3 5 n2 353关于数项级数敛散性的判定1、问题的提出数项级数敛散性的判别问题,是数学分析的一个重要部分.数项级数,从形式上看,就是无穷多个项的代数和,它是有限项代数和的延伸,因而级数的敛散性直接与数列极限联系在一起,其判别方法多样,技巧性也强,有时也需要多种方法结合使用,同时,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的工具,所以研究数项级数的判定问题是很重要的.2、熟练掌握并准确应用级数的概念、性质和判定定理2.1 数项级数收敛的定义∞ ∞数项级数∑un 收敛⇔ 数项级数∑u n 的部分和数列{S n }收敛于 S .n =1n =1这样数项级数的敛散性问题就可以转化为部分和数列{S }的极限是否存在的问题的讨论,但由于求数列前 n 项和的问题比较困难,甚至可能不可求,因此,在实际问题中,应用定义判别的情况较少.2.2 数项级数的性质∞ ∞∞( 1) 若级数∑un 与∑vn 都收敛, 则对任意常数 c,d, 级数∑(cun+ dv n ) 亦收敛, 且n =1 n =1n =1∞∞∞ ∞∞∑(cun+ dv n ) = c ∑u n + d ∑v n ;相反的,若级数∑(cu n + dv n ) 收敛,则不能够推出级数∑u n 与n =1 n =1n =1n =1n =1∑vn 都收敛.n =1∞∞∞注:特殊的,对于级数∑un 与∑vn ,当两个级数都收敛时,∑(un± v n ) 必收敛;当其中一个n =1 n =1n =1∞∞收敛,另一个发散时,∑(un± v n ) 一定发散;当两个都发散时, ∑(u n ± v n ) 可能收敛也可能发散.n =1n =1∞1 1 ∞1 1例 1 判定级数∑( n n =1 + n ) 与级数∑( + n ) 的敛散性.n =1∞1∞1∞11解:因为级数∑ nn =1与级数∑ nn =1收敛,故级数∑( nn =1∞1 2 -1 n - 1 n + 1n - 1 n =1 ⎢ ∞∞1∞1∞1 1因为级数∑ n 发散,级数∑ 2n 收敛,故级数∑( n + 2n ) 发散.n =1 n =1 n =1(2) 改变、增加或去掉级数的有限个项不会改变原级数的敛散性.(3) 在收敛级数的项中任意加括号,既不改变级数的敛散性,也不改变它的和.即收敛的级数在不改变各项顺序的情况下,对它的各项任意加括号后,得到的新级数还是收敛的;加括号后得到的新级数发散,那么原级数也是发散的.例 2 判定级数-+ + 1 - 1+ 的敛散性.∞ ⎛11 ⎫ 1 1 2∞ 2 解:先考察级数∑ n =1 ⎝ - ⎪ ,因为u n = - n + 1⎭= n - 1 ,而级数∑ n - 1 发散,由于加括号后得到得新级数发散,则原级数发散.∞∞(4) 级数收敛的必要条件 若级数∑un 收敛,则lim u n = 0 .若lim u n ≠ 0 ,则级数∑u n 发散.n =1n →∞n →∞n =12.3 判定定理2.3.1 级数收敛的柯西准则级 数∑un 收 敛n =1⇔ ∀> 0 , ∃N ∈ N *, 使 得 当 m > N 以 及∀p ∈ N * ,都 有u m +1 + u m +2 + + u m + p < .例 1 用柯西准则判别级数∑ sin 2n 2n的敛散性.证明:由于u m +1 + u m +2 + + u m + p =+ sin 2m +22m +2+ +< 1 2m +1+ 1 2m +2+ + 1 2m + p = 1- 2m 1 < 1 2m + p 2m因此, 对于任意的 > 0 .取 N = ⎡log⎣1 ⎤ 使得当 m > N 及任意的2⎥⎦p ∈ N * ,由上式就有u m +1 + u m +2 + + u m + p < 成立,故由柯西准则可推出原级数收敛.2.3.2 正项级数判别法(1) 正项∑un 收敛⇔ 它的部分和数列{S n }有界.∞ 1 2 + 1 n - 1 n + 1 sin 2m +12m +1 sin 2m + p2m + pn 4(n +1) n 4• nn ∞∞∞∞∞ ∞(2) 比较判别法 如果∑un 和∑vn 是正项级数,若存在某整数N ,对一切 n > N 都有u n ≤ v nn =1n =1∞∞∞∞(i) 若级数∑vn 收敛,则级数∑un 也收敛;(ii )若级数∑un 发散,则级数∑vn 也发散.n =1n =1n =1n =1等比级数和 P-级数的敛散性①等比级数∑ a q n = a + aq + aq 2 + + aq n + ,当 q < 1 时,级数收敛;当 q ≥ 1 时,级数n =1发散.∞1②P -级数∑ p,当 p ≤ 1时,发散;当 p > 1时,收敛.n =1例 2 判别级数∑1解:因为u n =敛.的敛散性.<1 =1n2,而且 P-级数∑1收敛,由比较判别法知该级数收5 n2∞∞u n (3) 比较判别法的极限形式 如果∑un 和∑vn 是正项级数(v n ≠ 0) ,如果lim= l ,则n =1 n =1 n →∞v n∞∞∞(i )当0 < l < +∞ 时,∑un 和∑vn 同时收敛或发散;(ii )当l = 0 时, ∑v n 收敛时,n =1n =1 n =1∞∞∞∑un也收敛;(iii )当l = +∞ 时,∑vn 发散时,∑un 也发散.n =1n =1n =1例 3 判别级数∑(na - 1)(a > 1)的敛散性.解:因为lim 令t = 1 lim a t - 1 = lim a tln a = ln a ,而正项级数∑ 1 发散,由比较原则 n →∞ 1 nn t →0 t t →0 1 n的极限形式知原级数发散.(4) 比式判别法 如果∑u n 为正项级数,且 n =1u n +1u n= ,∞∞(i )若0 < < 1,则∑un 收敛;(ii )若≥ 1, ∑u n 发散.n =1n =1n 4(n + 1)na - 1 1 5∑∞1例 4 判别级数 (n + 1)! 的敛散性.10n解:因为limu n +1= lim (n + 2)! • 10n = lim n + 2= +∞ ,所以由比式判别法知原级数发散. n →∞u nn →∞ 10n +1 (n + 1)! ∞n →∞ 10u n +1(5) 比式判别法的极限形式 如果∑un 为正项级数,且lim=,则n =1n →∞ u n∞∞(i )若< 1,则∑un 收敛;(ii )若> 1或= +∞ 时, ∑u n 发散.n =1n =1例 5 判别级数∑ 解:因为lim u n +1 3n • n ! nn= lim的敛散性.3n +1(n + 1)! • n n = lim 3= 3 > 1 ,所以由比式判别法的极限形n →∞ u nn →∞ (n + 1)n +1 3n n ! n →∞ ⎛1 + ⎝ 1 ⎫ne ⎪ ⎭式知原级数发散.∞∞(6)根式判别法 如果∑un 为正项级数,(i )如果 n u nn =1≤ < 1,则∑u n 收敛;(ii )若 n =1≥ 1 ,则级数∑un 发散.n =1(7) 根式判别法的极限形式 如果∑un 为正项级数,还有lim n u n =,n =1n →∞∞∞(i )当< 1时,则∑un 收敛;(ii )当> 1时,则∑u n 发散.n =1n =1⎛ n ⎫n例 6 判别级数∑ 2n + 1⎪ 的敛散性.⎝解:因为lim ⎭= lim n = 1 < 1,所以由比式判别法极限形式知原级数收敛. n →∞ n →∞ 2n + 1 2 +∞(8) 积分判别法 若 f (x ) 为[1,+∞) 上的非负减函数,那么正项级数∑ f (n ) 与反常积分 ⎰1收敛或同时发散.例 7 判别级数∑n 2 + 1的敛散性.f (x )dx 同时解:设 f (x ) = 1 ,则 f (x ) 在[1,+∞) 上为非负单调递减函数,而 +∞ dx =x 2 + 1故由积分判别法知原级数收敛.⎰11 + x 24∞ n u n n ⎛ n ⎫n ⎝ 2n + 1⎭⎪ n∞∞nn∞∞ ⎛ u n⎫(9) Raabe 判别法 设u n > 0 , R n = n un +1 - 1⎪, n = 1,2, .⎭(i) 若存在 q > 1 及正整数 N ,使得当 n ≥ N 时有 R n ≥ q ,则级数∑un 收敛;n =1(ii )若存在正整数 N ,使得当 n ≥ N 时有 R n ≤ 1,则级数∑un 发散.n =1(10) Raabe 判别法的极限形式 设∑un 是正项级数,且有lim R n = r ,n =1n →∞(i ) 若 r > 1 ,则级数∑un 收敛;n =1(ii ) 若 r < 1,则级数∑un 发散.n =1例 8 判别级数∑ (2n - 1)!! (2n )!! ⋅ 1 的敛散性.2n + 1解:容易验证,因为→ 1(n → ∞)这个级数用比式判别法和根式判别法都失效,这时可以用 Raabe⎛ u n⎫ ⎧(2n + 2)(2n + 3) ⎫ (6n + 5)n 3判别法.此时, R n = n u- 1⎪ = n ⎨ (2n + 2)2 - 1⎬ = (2n + 1)2 → (n → ∞).由 Raabe 判别 2 ⎝ n +1 ⎭ ⎩ ⎭法知原级数收敛.正项级数的判别方法有很多种,下面总结一下这几种方法的选择顺序:①若lim u 易于求的,考察 n →∞lim u n 的值: lim u n ≠ 0 ,则依据级数收敛的必要条件,知级数发散;②若lim u n = 0 ,不能直接判断n →∞n →∞n →∞级数是收敛还是发散,此时用比式判别法或根式判别法,当< 1时,级数收敛;若> 1或= +∞ 时,级数发散;③当= 1时,级数可能收敛也可能发散,此时用比较判别法,找出一个已知敛散性的级数与之比较,然后根据比较判别法或其极限形式判定级数的敛散性,当然,对于一些具体问题,我们应该根据其特点分析,找到更简便的判别方法.2.3.3 一般项级数的判别方法(1) 交错级数判别法∞Leibniz 判别法 若交错级数 ∑(-1)n +1u n =1n( u n > 0 ),满足下述两个条件:(i )数列{u n}单调递减; (ii ) lim u = 0 ,则级数收敛. n →∞∞ ∞ ⎝∞∞n →∞n →∞n →∞注:用 Leibniz 判别法判定u n > u n +1 u 时,可以用以下几种方法:①比值法:考察是否有 u > 1 ;②差值法: 考察是否有 u n - u n +1 > 0 ; ③ 导数法: 即建立一个连续可导的函数f (n ) = u n (n = 1,2, ) ,考察是否有 f '(n ) < 0 .n +1f (x ) , 使例 9 判定级数∑(-1)n =1n -1n + 1 (n + 1) ln (n + 1)的敛散性.n + 1n + 1解:因为此级数为交错级数 ,设u n =(n + 1)ln (n + 1) ,易证lim u n = lim(n + 1)ln (n + 1) = 0 ,下面判定u n > u n +1 ,下面我们用导数的知识判定数列{u n }单调递减.设 f (n ) = u n =(n + 1,则 f '(n ) = (un + 1)ln (n + 1))' = ln (n + 1) - n ,又设 g (n ) = ln (n + 1) - n ,则 g '(n ) = 1 - 1 < 0 ,∴ g (n ) 单 n(n + 1)2 ln 2 (n + 1)n + 1调递减, g (n ) < g (0) ,∴ f '(n ) < 0 , f (n ) 单调递减, u n > u n +1 ,由 Leibniz 判别法,知原级数发散.(2) 绝对收敛∞ ∞若级数∑un 各项绝对值组成的级数∑ un收敛,则原级数绝对收敛.n =1n =1∞∞性质:绝对收敛的级数一定收敛.此定理的逆命题不成立,即:若∑un 收敛,不能判定∑ un 也 n =1n =1收敛.(3) Abel 判别法若{a n }为单调有界数列,且级数∑bn 收敛,则级数∑ a n bn 收敛.∑( )n 1 ⎛ 1 ⎫n( ) 例 10 判定级数- 1 ln (n ) 1 + n ⎪ 4 - arctan n 的收敛性. n =2⎝ ⎭ ∞ ( )n 1⎧⎪⎛1 ⎫n⎫⎪ 解:根据 Leibniz 判别法知级数∑ -1 ln n 收敛.因为⎨ 1 + n ⎪ ⎬ 递增有界,故由 Abel 判别法n ∑( )n 1 ⎛ 1 ⎫ n =2 ⎪⎩⎝ ⎭ ⎪⎭{ } 知级数 - 1 ln (n ) 1 + n ⎪收敛,又因 4 - arctan n 递减有界,再由 Abel 判别法知原级数收敛. n =2⎝ ⎭(4)Dirichlet 判别法若数列{a n }单调递减,且lim a n = 0 ,又级数∑bn 的部分和数列有界,则级数∑ a n bn 收敛.∞ nx 2 -1 ln 1 +⎪ (4n - 2)(4n + 1)⎝ n ⎭(4n - 2)(4n + 1) (- 1 ) ln 1 + n⎛ 1 ⎫ n ⎪ (4n - 2)(4n + 1) ⎝ ⎭ 3n n∞例 11 判定级数∑n =1sin nx , x ∈ (0,2) (> 0)的敛散性.n解: 由于当 x ∈ (0,2)时, 有 ∑ s in kx ≤ 1, 即 ∑∞ sin nx 的部分和数列有界, 而数列 k =1 sin n =1⎧ 1 ⎫(> 0) 单调递减,且lim 1= 0 ,故由 Dirichlet 判别法知,原级数收敛.⎨ ⎬⎩ n ⎭n →∞ n对于交错级数敛散性判定问题,应先判定其是否绝对收敛,即若∑ unn =1收敛,则∑un 收敛;若不n =1是绝对收敛,则根据 Leibniz 判别法,Abel 判别法,Dirichlet 判别法判定其是否条件收敛.3、巧妙判别数项级数敛散性以上介绍了一些判别数项级数敛散性的基本方法,但是在实际的应用中往往需要多种方法结合,且有时还有一定的技巧性,下面结合一些实例列举一些常用的判别方法和技巧.3.1 等价无穷小替换的方法判断级数敛散性∞ ∞应用定理:设∑un 和∑vn 是两个正项级数,且当n → ∞ 时, u n 和 v n 为等价的无穷小量,则n =1n =1∞∞∑un 和∑vn 的敛散性保持一致.n =1n =1证明:由于当 n → ∞ 时, u n 和v n为等价的无穷小量,即lim u n n →∞ v= 1 ≠ 0 ,由比较判别法的极限形 n∞∞式可知级数∑un 和级数∑vn 同时收敛或同时发散.n =1例 1 判定级数∑n =1( )n n =1⎛1 ⎫的敛散性.(- )n⎛ + 1 ⎫ 1 解: 设 u n = 1 ln 1 ⎝ ⎪ ⎭ , 则 u =~ n = 4n 1 4n 2, (n → ∞), 而级数∞1∑ 2收敛,所以原级数绝对收敛.n =13.2 运用常用不等式判断级数的敛散性∞ ∞ ∞ ∞ na n n 2 + ∑ n∞∞⎝∑ 常用的不等式有: ln n < n , ln (1 + x ) < x , e x > 1 + x∞ ⎛ 1n + 1⎫ 例 2 判定级数 - ln n =1 ⎝ ⎪ 的敛散性. n ⎭ 解:此题我们可以利用不等式ln ( 1 + x ) < x ,1n + 1 1 n 1 ⎛1 ⎫ 1 1 有u n = n - ln n = + ln = + ln 1 - ⎪ < - n n + 1 n n + 1 n n + 1 ⎝ ⎭∞ ⎛ 11 ⎫ 因为级数∑ n - n + 1⎪ 收敛,故原级数收敛.n =1 ⎝ ⎭ 3.3 运用平均不等式ab ≤1 (a2 + b 2 )判断级数敛散性2∞ ∞∞应用定理:若级数∑ a 2和级数∑b 2都收敛,则级数∑ a b绝对收敛.nn =1∞a 2nn =1∞b 2n nn =1∞ 1(a 2 + b 2 )证明:已知级数∑n =1n和级数∑n =1n 都收敛,根据级数收敛的性质,则级数∑ 2n n 收敛,由于有不等式 a b ≤1(a 2 + b 2 ),再根据比较判别法,知级数∑ a b∞收敛,所以级数∑ a b 绝对n n2nnn nn =1n nn =1收敛.∑2∑( )nn例 3 设常数> 0 ,级数 n =1 a n 收敛,判断级数- 1n =1 的敛散性.n 2 +∞ 2∞ 1 ∞ ⎛ 2 1 ⎫ 解:因为级数∑ a n 收敛,并且级数∑ n 2 + 1 也收敛,所以级数∑ a n + n2 ⎪ 收敛,n =1 n =11 1 ⎛2 1 ⎫ ⎝ + ⎭∞又因为 = a n n 2 + ≤ 2 a n + n 2 ⎪ ,由比较判别法可知,级数 收 + ⎭敛,故原级数绝对收敛.3.4 拉格朗日微分中值定理判断级数敛散性∞ ⎡ ⎛ 1 ⎫⎛ 1 ⎫⎤应用定理:设 f (x ) 在(0,1)内可导,且其导函数有界,则级数∑ ⎢ fn + k ⎪ - f n + k ⎪⎥ 绝对收 n =1 ⎣ ⎝ 1 ⎭ ⎝ 2 ⎭⎦敛.证明:因为 f (x ) 在(0,1)内可导,且其导函数有界,所以存在 M f '(x ) ≤ M ,于是由拉格朗日中值定理得> 0 ,对于一切 x ∈ (0,1) ,都有a nn 2 + ∞n n ∞lim ln 2 ⎪ u⎛ 1 ⎫ ⎛ 1 ⎫ '⎛ 1 1 ⎫ M (k 2 - k 1 ) f n + k ⎪ - f n + k ⎪ = f() n + k- n + k ⎪ ≤ (n + k )(n + k ) , ⎝ 1 ⎭ ∞ ⎝ 2 ⎭ 1 ⎝ 12 ⎭ ∞ ⎡ ⎛1 1 ⎫ ⎛2 1 ⎫⎤ 由于级数∑ (n + k )(n + k ) 收敛,所以级数∑⎢ f n + k ⎪ - f n + k ⎪⎥ 绝对收敛.n =1 1 2 ∞ ⎛ 1n =1 ⎣ ⎝ 1 ⎫ 1 ⎭ ⎝ 2 ⎭⎦ 例 4 判定级数∑ sin n + 10 - s in n + 1⎪ 的敛散性.n =1 ⎝⎭ 解:设函数 f (x ) = sin 1 ,则 f '(x ) = - 1x x 2⋅ cos 1 ,知 f '(x ) 有界,令 k x 1= 10, k 2 = 1,由于满足 ∞ ⎛ 1 1 ⎫上述定理条件,故级数∑ sin n + 10 - s in n + 1⎪ 收敛.n =1 ⎝ ⎭ 3.5 对数判别法判断级数敛散性∞ln 1u n∞应用定理:若级数∑un 为正项级数,若有> 0 ,使得当 n ≥ n 0 时,n =1ln n ≥ 1 +,则级数∑u nn =1ln 1u n∞收敛,若有 n ≥ n 0 时,ln n ≤ 1 ,则级数∑u n 发散. n =1ln 1u n 1∞ 1证明:如果 n ≥ n 0 时,不等式ln n ≥ 1 +成立,则有u n ≥1+ .由于级数∑ 1+ 收敛,所以 n =11∞ln ∞n由比较判别法知级数∑u n 收敛.同理可证,当不等式 n =1 ln n ≤ 1 成立时,则级数∑u n 发散. n =1∑ a ln n ( > )例 5 判定级数 a n =1 2n1 的敛散性.ln 1 u 2nln a ln n n ln 2 - ln n • ln a n 解:由于 n= ln n = ln n ln n = ln 2 ln n- ln a ,由洛必达法则可知:⎛ n - ln a ⎫ = ln 2 lim x - ln a = ln 2 lim 1 - ln a = +∞ n →+∞⎝ ln n ⎭n →+∞ ln x nn ←∞ 1 x所以,对> 0 ,存在 n 0 ,使得当 n ≥ n 0 时, ln 2 ln n- ln a ≥ 1 +,因而根据以上定理原级数发散.⎭⎦ ∞n n+ O , ∞ 例 7 判别级数的敛散性.⎝ n3.6 泰勒展开式判断级数的敛散性∞ ⎡ ⎛ 1 ⎫n⎤例 6 判别级数∑⎢ e - 1 + n ⎪ ⎥ 的敛散性.n =1 ⎢⎣ ⎝ ⎭ ⎥⎦ n⎛ 1 ⎫⎛ 1 1⎛ 1 ⎫ ⎫⎛ 1 ⎫n ln 1+ ⎪n n n - 2n2 +o n 2 ⎪ ⎪ ⎡ ⎛ 1 ⎛ 1 ⎫⎫⎤解:因为u = e - 1 + ⎪ = e - e ⎝⎭ = e - e ⎝⎝ ⎭ ⎭ ~ e ⎢1 - 1 - + o ⎪⎪⎥n ⎝ n ⎭⎣2n ⎝ n ⎭⎪ ~e (n → ∞).由于级数∑∞e 发散,所以原级数发散.2nn =1 2n3.7 拆项法判断级数的敛散性将级数的一般项运用等价变形、三角基本公式、有理化等方法拆成几项之差也是判别级数收敛的一种常用方法.∑sin (n )2 - n sinn =1 n 2sin (n)2 - n sinsin (n )2sin1 ∞ 1解:因为=n 2n 2∞sin (n )2-,而且n∞ sin≤ 2 ,由于级数∑ 2 收敛,n =1 根据比较判别法知级数∑2n =1收敛;而且∑n =1,当= k时,该级数收敛;当≠ k时,该级数发散.由此可知,当= k时,原级数收敛;当≠ k时,原级数发散.3.8 Gauss 判别法判断级数的敛散性若 a n > 0(n = 1,2, ) ,且 a n a = + n ⎛ 1 ⎫ n1+ ⎪ > 0 ,则级数 ∑ a n 当>1 时收敛;当n +1 ⎝ ⎭ n =1< 1时发散;而当= 1 时,对> 1收敛,对≤ 1发散.∞p (p + 1) (p + n - 1) 1例 8 判别级数∑ n =1( p > 0, q > 0) 的敛散性. n ! n q解:对于这个级数来说,an + 1 ⎛ n + 1⎫q ⎛ p ⎫-1⎛ 1 ⎫q +1 q - p + 1 ⎛ 1 ⎫n = ⎪ = 1 + ⎪ 1 + ⎪ = 1 + + O ⎪ , a n +1 p + n ⎝ n ⎭ ⎝ n ⎭ ⎝ n ⎭ n ⎝ n 2⎭所以它在 q > p 时收敛,在 q ≤ p 时发散.3.9 运用函数判定数项级数的敛散性以前讨论的方法判定级数敛散性都与数列极限紧密联系,这种方法利用函数来研究数项级数.给出了利用函数的导数和极限判别数项级数敛散性的的方法.sin (n )2n 2 n∞∞∞ ∞⎨ f (x ) ∞⎪ 收敛,则 应用定理 2 如果 存在, ⎪ 绝对收敛,则 . 应用定理 4 如果 存在,而且,则 ⎪ 绝对收敛. 由于已知 存在,即 存在,对 满足定理 3 条件,所以⎪ 绝对收敛. ∑ f ⎛ 1 ⎫ lim f (x ) = 0 n =1 ⎝ n⎭∞⎛ 1 ⎫ x →0⎛ 1 ⎫证 明 : 已 知 级 数 ∑ f ⎪ 收 敛 , 有 级 数 收 敛 的 必 要 条 件 得 lim f ⎪ = 0 , 因 而n =1lim f (x ) = lim f ⎛ 1 ⎫= 0 .⎝ n ⎭ x →∞ ⎝ n ⎭⎪x →0n →∞ ⎝ n ⎭∞ ⎛ 1 ⎫例 9 判别级数∑ n e n - 1⎪cos n 的敛散性.n =1 ⎛ 1 ⎫ ⎪ ⎝ ⎭ e x - 1 ⎛ 1 ⎫ 解:由于lim n e n - 1⎪ = lim = 1 ,又由于 limcos 不存在,所以lim f ⎪ 不存在,由定理 1 的n →∞ ⎝ ⎪ x →0 ⎭x →0 2 x →∞ ⎝ n ⎭ 逆否命题可知,级数不收敛.lim f '(x ) ∑ f ⎛ 1 ⎫ lim f '(x ) = 0 x →0 = n =1 ⎝ n ⎭x →0 f (0) = f '(0) = 0 ∑ f ⎛ 1 ⎫ 应用定理 3 如果函数在 x 0 存在二阶导数,且 ,则n ⎪ 绝对收敛. n =1 ⎝ ⎭ lim f ' (x ) lim f (x ) = lim f '(x ) = 0 ∑ f ⎛ 1 ⎫ x →0x →0x →0n =1⎝ n ⎭ 证明:首先作辅助函数G (x ) = ⎧0⎩ x = 0 x ≠ 0考察G (x ),有G (0) = 0G '(0) = limf (x ) = lim f '(x ) = 0 x →0 x x →0G ' (0) = lim G '(x ) - G '(0) = lim f (x ) = lim f ' (x )x →0 xx →0 x x →0 lim f ' (x ) G ' (0) = 0 G (x ) ∑ f ⎛ 1 ⎫ x →0⎡1 - 1 ⎤ 2n =1 ⎝ n ⎭例 10 判别级数∑ ⎢ a n+ an- 2 ⎥ 的敛散性.⎢ n =1 ⎢⎣ 1 ⎥ a n- 1 ⎥⎦⎛ a x + a -x - 2 ⎫22 ln a (a x + a -x - 2)2解:不妨设 f (x ) = ⎝ a x- 1 ⎪ ,则 f '(x ) = ⎭ (a x - 1)3∞ 应用定理 1 若级数x= f ' (x ) =2 l n 2 (- a 3x + 6a 2x - 14a x + 2a -2x - 9a -x + 16)(a x - 1)4求极限得lim f (x ) = 0x →0应用洛必达法则,得lim f x →0'(x ) =8 ln a (2a 2x + 2a -2x - a x + a -x ) 27a 3x - 24a x + 3a x 0lim f x →0' (x )= lim x →0 ln 2 (81a 3x + 96a 2x - 14a x + 32a -2x - 9a -x ) 64a 4x - 81a 3x + 24a 2x - a x= 4 ln 2 a⎡ 1 - 1 ⎤ 2所以lim f ' (x ) 存在,根据定理 4 知级数∑ ⎢ a n + a n- 2 ⎥ 绝对收敛.x →0 ⎢ n =1 ⎢⎣ 1 ⎥ a n - 1 ⎥⎦从以上分析和各例子可以看出,判定数项级数敛散性方法众多,我们应深刻体会各个定义、性质、定理的条件及结论,同时也要善于观察和总结,正确且灵活地使用各定理.∞。

相关主题