流体的流动现象
由此例可见,无论采用何种单位制来计算,Re值都相等.
[例1-17]在 得无缝钢管中输送燃料油,油得运动粘度为90cSt,试求燃料油坐标滞流流动时得临界速度.
解:由于运动粘度 ,则 .滞流时,Re得临界值为2000,即
Re=du/v=2000
式中d=168-5x2=158mm=0.158m
(1—30)
图1-14中b、c、d曲线所代表的流体,其表观粘度凡都只随剪切速率而变,和剪切力作用持续的时间无关,故称为与时间无关的粘性流体,又可分为下面三种。
1)假塑性(Pseudoplastic)流体这种流体的表观粘度随剪切速率的增大而减小,τ对γ的关系为一向下弯的曲线,该曲线可用指数方程来表示:
τ=τ0+η0 (1—32)
式中τ0—屈服应力,Pa;
η0—刚性系数,Pa·s。
二、与时间有关的粘性流体.
在一定剪切速率下,表观粘度随剪切力作用时间的延长而降低或升高的流体,则为与时间有关的粘性流体。它可分为下面两种。
1)触变性(thixotropic)流体这种流体的表观粘度随剪切力作用时间的延长而降低,属于此类流体的如某些高聚物溶液、某些食品和油漆等。
[例1-16]20℃得水在内径为50mm得管内流动,流速为2m/s.试分别用法定单位制和物理单位制计算准数得数值.
解:(1)用法定单位制计算从本教材附录六查得水在20℃时
已知:管径d=0.05m,流速u=2m/s,则
Re=
(2)用物理单位制计算
u=2m/s=200cm/s, d=5cm
所以Re=99320
(1—26a)
式中 —速度梯度,即在与流动方向相垂直的y方向上流体速度的变化率;
—比例系数,其值随流体不同而异,流体的粘性愈大,其值愈大,所以称为粘滞系数或动力粘度,简称为粘度
式1—26或式1—26a所显示的关系,称为牛顿粘性定律。
图1—13—般速度分布示意图
二、流体的粘度
式1—26a可改写成
所以粘度的物理意义是促使流体流动产生单位速度梯度的剪应力。由上式可知,速度梯度最大之处剪应力亦最大,速度梯度为零之处剪应力亦为零。粘度总是与速度梯度相联系,只有在运动时才显现出来。分析静止流体的规律时就不用考虑粘度这个因素。
涨塑性流体比假塑性流体少得多,如玉米粉、糖溶液、湿沙和某些高浓度的粉末悬浮液等均属此类流体。
3)宾汉塑性(Binghamplastic)流体这种流体的τ-γ关系如图1—14的直线d所示,它的斜率固定,但不通过原点,该线的截距τ0称为屈服应力。这种流体的特性是,当剪应力超过屈服应力之后才开始流动,开始流动之后其性能像牛顿型流体一样。属于此类的流体有纸浆、牙膏和肥皂等也塑性流体的流变特性可表示为
1—3—2非牛顿型流体
服从牛顿粘性定律的流体,称为牛顿型流体,所有气体和大多数液体都属于这一类。
由前已知,牛顿粘性定律的表达式为
(1 -26a)
根据速度的定义,可将速度梯度改写为
上式中dx/dy表示剪切程度的大小, 即为剪切速率,以γ表示,于是牛顿粘性定律可改写为
(1—26b)
上式称为流变方程,在直角坐标图上标绘τ对du/dy(或τ)的关系,可得一条通过原点的直线,如图1—14中的a线所示。该图称为流变图。
(泊)
[例1—15]从某手册中查得水在40oC时的粘度为0.656cP(厘泊),试换算成Pa·s单位。
解:lcP=0.01P=0.01
或1Pa·s=1000cP
则0.656cP=65.6X10-5Pa·s
此外,流体的粘性还可用粘度μ与密度ρ的比值来表示。这个比值称为运动粘度,以γ表示,即
γ= (1—27)
流体流动时的内摩擦力大小与哪些因素有关?可通过下面情况加以说明。
图1—11流体在圆管内分层流动示意图
图1—12平板间液体速度变化图
如图1—12所示,设有上下两块平行放置且面积很大而相距很近的平板,板间充满了某种液体。若将下板固定,对上板施加一个恒定的外力,上板就以恒定的速度u沿x方向运动。此时,两板间的液体就会分成无数平行的薄层而运动,粘附在上板底面的一薄层液体也以速度u随上板运动,其下各层液体的速度依次降低,粘附在下板表面的液层速度为零。
图1—14牛顿流体与非牛顿流体的流变图
a-牛顿型流体b-假塑型流体c-涨塑型流体d-宾汉塑型流体
流体的分类和特性,更多的内容可参阅有关方面的专著。.
根据流体的流变方程式或流变图,可将非牛顿型流体分类如下:
非牛顿型流体
以下按上述分类次序,扼要介绍各种流体。
一、与时间无关的粘性流体
对于与时间无关的粘性流体,在流变图上可见,对du/dy关系曲线或是通过原点的曲线,或是不通过原点的直线,如图1—14中的b、c、d诸线所示。这些关系曲线的斜率是变化的。因此,对与时间无关的粘性流体来说,粘度一词便失去意义。但是,这些关系曲线在任一特定点上也有一定的斜率,故与时间无关的粘性流体在指定的剪切速率下,有一个相应的表观粘度值,即
粘度是流体物理性质之一,其值由实验测定。液体的粘度随温度升高而减小,气体的粘度则随温度升高而增大。压强变化时,液体的粘度基本不变;气体的粘度随压强增加而增加得很少,在一般工程计算中可以忽略,只有在极高或极低的压强下,才需考虑压强对气体粘度的影响。
在法定单位制中,粘度的单位为
某些常用流体的粘度,可以从本教材附录或有关手册中查得,但查到的数据常用其它单位制表示,例如在手册中粘度单位常用cP(厘泊)表示。lcP二0.01P(泊),P是粘度在物理单位制中的导出单位,即
2)流凝性(Rhexopectic)流体这种流体的表观粘度随剪切力作用时间的延长而增加,此类流体如某些溶胶和石膏悬浮液等。
三、粘弹性(Viscoeltic)流体
此类流体是介于粘性流体和弹性固体之间,它们同时表现出粘性和弹性.在不超过屈服强度的条件下,剪应力除去以后,其变形能部分的复原.属于此种流体的有面粉团,凝固汽油和沥青等.
1-3-3流动类型与雷若准数
为了直接观察流体流动时内部质点的运动情况及各种因素对流动状况的影响,可安排如图1-15所示的实验.这个实验称为雷若实验.在水箱3内装有溢流装置6,以维持水位恒定.箱的底部接一段直径相同的水平玻璃管4,管出口处有阀门5以调节流量.水箱上方装有带颜色液体的小瓶1,有色液体可经过细管2注入玻璃管内.在水流经玻璃管过程中,同时把有色液体送到玻璃管入口以后的管中心位置上.
τ= (1—31)
式中K—稠度系数,Pa·sn;
n—流性指数,无因次。对于假塑性流体,n<1。
大多数与时间无关的粘性流体属于此类型,其中包括聚合物溶液或熔融体、油脂、淀粉悬浮液、蛋黄浆和油漆等。
2)涨塑性(dilatant)流体与假塑性流体相反,这种流体的表观粘度随剪切速率的增大而增加,τ对γ的关系为一向上弯的曲线,如图1—14曲线c所示,该曲线的方程式仍可用式1—31来表示,但式中的n>1。
下标I表示组分的序号。
最后还应指出,在推导柏努利方程式时,曾假设一种理想流体,这种流体在流动时没有摩擦损失,即认为内摩擦力为零,故理想流体的粘度为零。这仅是一种设想,实际上并不存在。因为影响粘度的因素较多,给研究实际流体的运动规律带来很大的困难。因此,为把问题简化,先按理想流体来考虑,找出规律后再加以修正,然后应用于实际流体。而且在某些场合下,粘性并不起主要作用,此时实际流体就可按理想流体来处理。所以,引进理想流体的概念,对解决工程实际问题具有重要意义。
雷若准数的因次为
[Re]=[ ]=
可见,Re准数是一个无因次数群..组成此数群的各物理量,必须用一致的单位表示.因此,无论采用何种单位制,只要数群中各物理量的单位一致,所算出的Re值必相等.
凡是几个有内在关系的物理量按无因次条件组合起来的数群,称为准数或无因次数群.这种组合并非是任意拼凑的,一般都是在大量的实验的基础上,对影响某一现象和过程的各种因素有一定认识后,再用物理分析或数学推演或二者相结合的方法定出来.它既反映所包含的各物理量的内在关系,又能说明某一现象或过程的一些本质.如流体的流动类型,可用雷若数判断.
实验证明,对于一定的液体,内摩擦力F与两流体层的速度差△u成正比;与两层之间的垂直距离△y成反比;与两层间的接触面积S成正例系数 ,即
F=
内摩擦力F与作用面S平行。单位面积上的内摩擦力称为内摩擦应力或剪应力,以 表示,于是上式可写成
(1—26)
式1—26只适用于u与y成直线关系的场合。当流体在管内流动时,径向速度的变化并不是直线关系,而是如图1—13所示的曲线关系,则式1—26应改写成
以水在管内流动为例,管内任一截面上各点的速度并不相同,中心处的速度最大,愈靠近管壁速度愈小,在管壁处水的质点附于管壁上,其速度为零。其它流体在管内流动时也有类似的规律。所以,流体在圆管内流动时,实际上是被分割成无数极薄的圆筒层,一层套着一层,各层以不同的速度向前运动,如图1—11所示。由于各层速度不同,层与层之间发生了相对运动。速度快的流体层对相邻的速度较慢的流体层产生了一个推动其向前进方向的力;同时,速度慢的流体层对速度快的流体层也作用一个大小相等、方向相反的力,从而阻碍较快流体层向前运动。这种运动着的流体内部相邻两流体层间的相互作用力,称为流体的内摩擦力。它是流体粘性的表现,又称为粘滞力或粘性摩擦力。流体流动时的内摩擦,是流动阻力产生的依据,流体流动时必须克服内摩擦力而作功,从而流体的一部分机械能转变为热而损失掉。
实验证明,流体在直管内流动时,当Re≤2000时,流体流动类型属于滞流;当Re≥4000时,流动类型属于紊流;而当Re值在2000~4000的范围内,可能是滞流,也可能是紊流,若受外界条件的影响,如管道直径或方向的改变,外界的轻微的振荡,都易促成紊流的发生,所以将这一范围称为不稳定的过渡区.在生产操作条件下,常将Re>3000的情况按紊流考虑.
图1-15雷若实验装置
1-小瓶2-细管3-水箱4-水平玻璃管5-阀门6-溢流装置