当前位置:文档之家› 第9章 酶促反应动力学

第9章 酶促反应动力学

第九章酶促反应动力学(一)底物浓度对酶反应速率的影响用反应初速度v对底物浓度[S]作图得P355 图9-6。

曲线分以下几段:(1)OA段:反应底物浓度较低时v与[S]成正比,表现为一级反应, v = k[S]。

根据酶底物中间络合物学说,酶催化反应时,首先和底物结合生成中间复合物ES,然后再生成产物P,并释放出E。

E + S = ES →P + EOA段上,底物浓度小,酶未被底物饱和,有剩余酶,反应速率取决于ES浓度,与[S]呈线性关系,v正比于[S]。

(2)AB段:反应速度不再按正比升高,表现为混合级反应。

此时酶渐渐为底物饱和,[E S]慢慢增加,v也慢慢增加,为分数级反应。

(3)BC段:反应速度趋于V max,为零级反应,酶促反应表现出饱和现象。

此时底物过量[S]>[E],[E]已全部转为[E S]而恒定,因此反应速率也恒定,为最大反应速率,V max为[E]所决定。

非催化反应无此饱和现象。

酶与底物形成中间复合物已得到实验证实。

(二)酶促反应力学方程式(1)米氏方程推导1913年Michaelis和Menten提出并推导出表示[S]与v之间定量关系的米氏方程V max[S]V =K m + [S]Km:米氏常数,物理意义为反应速率为最大速率V max一半时底物的浓度,单位与底物浓度同。

推导:酶促反应分两步进行。

k1k3E + S ES →P + Ek2v = k3 [ES]一般k3为限速步骤v = k3 [ES] …①1.[ES] 生成速率:d[ES]/dt = k1([E] - [ES]) [S]2.[E S]分解速率:-d[ES] / dt = k2 [ES] + k3 [ES] = (k2 + k3) [ES]3.稳态下[ES]不变,ES生成速率和分解速率相等:k1 ([E]- [ES]) [S] = (k2+k3) [ES]4.引入K m:令K m = k2+k3 / k1代入K m = ([E]- [ES]) [S] / [ES] ,K m [ES] = [E] [S]- [S] [ES], [ES] (K m + S) = [E] [S],[ES] = [E] [S] / K m+[S],5.代入①式:v = k3 [ES] = k3 [E] [S] / K m + [S] …②6.引入V max:为所有酶都被底物饱和时的反应速率,即此时[E]= [ES]V max = k3 [ES] = k3 [E]代入②式:v = V max [S] / K m + [S]米氏方程表示K m及V max已知时,v~[S]的定量关系。

(2)米氏常数的意义1.K m是酶的一个特性常数,K m大小只与酶性质有关,而与酶浓度无关。

当底物确定,反应温度,p H及离子强度一定时,K m值为常数,可用来鉴别酶。

P359 表9-1 列出一些酶的K m值。

一般K m在1×10-6~10-1mol/L之间。

不同的酶K m值不同,测定K m要在相同测定条件(pH、温度、离子强度)下进行。

2.K m值可用于判断酶的专一性和天然产物,若一个酶有几种底物就有几个K m值,其中K m值最小的底物称为该酶的最适底物,又称天然底物。

3. 1 / K m可近似表示酶与底物亲和力的大小。

真正表示酶与底物亲和力为K s=k2 / k1 ,(注K m= k2+k3 / k1)。

4.已知K m可由[S]计算v,或由v计算[S]。

5.K m可帮助推断某一代谢反应的方向和途径。

K m小的为主要催化方向(正、逆两方向反应K m不同)。

(3)V max和k3(k cat)的意义:酶浓度[E]一定,则对特定底物V max为一常数。

催化常数k cat又称酶的转化数,数值上与k3同,为酶被底物饱和时,每秒钟每个酶分子转换底物的分子数。

大多数酶的k cat为1~104/sec,见P322 表8-2,为每秒钟酶促反应每微摩尔酶分子转换底物的微摩尔数。

k cat越大,酶催化效率越高。

(4)k cat / K m的意义:生理条件下S << K m,V max = k cat [E]代入米氏方程v = k cat [E] [S] / K m + [S] = k cat [E] [S] / K m得出:v = k cat / K m[E][S]k cat / K m为[E]和[S]反应形成产物的表观二级速度常数,单位:L/mol s。

可以比较不同酶或同一种酶催化不同底物的催化效率,见P362 表9-4。

k cat / K m大小可以比较不同酶或同一种酶催化不同底物的催化效率。

(三)米氏常数求法:(1)双倒数法:1 / v = K m / V max×1 /[S] + 1 / V max以1 / v ~ 1 / [S]作图,见P363 图9-10纵轴截距:1 / V max;横轴截距:-1 / K m;斜率:K m / V max。

(2)v ~ v / [S]法(Eadic-Hofstee):v = -K m×v / [S] +V max以v ~ v / [S]作图,见P363 图9-11。

斜率:-K m;纵轴截距:V max;横轴截距:V max / K m。

(3)[S] / v ~ [S]法(Hanes-Woolf):[S] / v = K m / V max + 1 / V max×[S]以[S] / v ~ [S]作图,见P363 图9-12斜率:1 / V max;纵轴截距:K m / V max;横轴截距:-K m。

§2.9 酶的抑制作用失活作用:使酶蛋白变性而引起酶活力丧失。

抑制作用:酶的必需基团的化学性质改变而引起酶活力降低或丧失,但不引起酶蛋白变性。

引起抑制作用的物质称为抑制剂。

研究酶的抑制剂,可以研究酶的结构与功能、酶催化机制,进行药物、农药的设计与筛选。

(一)抑制作用的类型:(1)不可逆抑制作用:抑制剂与酶必需基团以共价键结合而引起酶活力丧失,不能用透析、超过滤等物理方法除去抑制剂而使酶复活,酶被化学修饰。

(2)可逆抑制作用:抑制剂与酶以非共价键结合而使酶活力降低或丧失,能用物理方法除去抑制剂而使酶复活。

可逆抑制又分为三种类型,如P369 图9-17所示。

1.竞争性抑制:抑制剂(I)和底物(S)竞争酶的结合部位,从而影响了底物与酶的正常结合。

抑制剂结构大多与底物类似,许多底物过渡态类似物为抑制剂。

抑制剂与酶活性部位结合形成EI复合物,抑制酶与底物的结合。

竞争性抑制可以通过增加底物浓度而解除,如丙二酸或戊二酸对琥珀酸脱氢酶的抑制。

2.非竞争性抑制:底物和抑制剂同时和酶结合,两者无竞争作用。

I与S结构无共同之处,酶活性降低或被抑制,不能用增加底物浓度来解除抑制,如Leu是精氨酸酶非竞争性抑制剂。

3.反竞争性抑制:酶只有与底物结合后才能与抑制剂结合。

常见于多底物反应中,如肼类化合物抑制胃蛋白酶。

(二)可逆抑制作用和不可逆抑制作用动力学鉴别加入一定量抑制剂,以v与酶浓度[E]作图,见P370 图9-8。

加不可逆抑制剂使直线原点右移,斜率不变,加入酶使浓度大于不可逆抑制剂,才表现酶活力;加可逆抑制剂,直线原点不动,斜率变小。

(三)可逆抑制作用动力学(1)竞争性抑制:1 /v ~ 1 /[S]作图见P371 图9-20,V max不变,K m变大。

纵轴截距:1 /V max不变,V max不变,底物浓度足够高,可克服抑制作用;横轴截距:1 /K m 变小,K m变大;斜率:K m / V max变大。

(2)非竞争性抑制:1 /v ~ 1 /[S]作图见P372 图9-21,V max变小,K m不变。

纵轴截距:1 /V max变大,V max变小;横轴截距:-1 /K m不变,K m不变;斜率:K m / V max 变大。

(3)反竞争性抑制:1 /v ~ 1 /[S]作图见P373 图9-22,K m,V max都变小。

(四)一些重要的抑制剂:(1)不可逆抑制剂:1.有机磷化合物:与脂酶活性部位Ser–OH共价结合,如抑制胆碱酯酶,使乙酰胆碱不能分解而积累,使一些以乙酰胆碱为传导介质的神经系统处于过于兴奋状态,引起神经中毒。

如神经毒剂和有机磷农药,结构式见P374。

可用能与磷酸根有更强结合力的化合物将酶游离出,从而解毒,如用肟类化合物解磷定,结构式见P374。

2.有机砷化合物:与酶中Cys-SH作用使人畜中毒。

如有机砷化合物路易斯毒气(结构式见P375),可用含-SH的化合物作解毒剂,使酶恢复活性。

3.氰化物、CO、H2S与含铁卟啉的酶,如细胞色素氧化酶中的Fe2+络合,使酶失活,阻止呼吸。

4.青霉素:与糖肽转肽酶活性部位Ser-OH共价结合,使酶失活,(P375图9-24)抑制细菌细胞壁合成。

青霉素与转肽酶的底物之一的酰基-D-Ala-D-Ala结构类似,见P546。

5.TLCK:根据底物的化学结构设计的专一性不可逆抑制剂。

以胰蛋白酶底物对甲苯磺酰-L-赖氨酰甲酯(TLME)为模板,设计底物结构类似物对甲苯磺酰-L-赖氨酰氯甲酮(TLCK)(结构见P376 图9-25),与胰蛋白酶活性部位His57共价结合,引起不可逆失活。

(2)可逆抑制剂:磺胺药:四氢叶酸(THF)是合成核酸和蛋白质酶的必需物质(辅酶)。

根据人和细菌获THF途径不同设计磺胺类杀菌剂。

叶酸(FA)结构见P377,DHF(二氢叶酸)、THF 见P457 图11-30。

FA还原酶DHF还原酶叶酸DHF THF(人可从食物中获取)DHF合成酶对氨基苯甲酸(细菌靠此合成THF)人体可直接从食物获取叶酸经DHF还原成THF而细菌只能从对氨基苯甲酸合成DHA。

因此若抑制DHF合成酶,即可断绝细菌THF来源,从而抑制核酸和蛋白质的合成,而抗菌。

THF中对氨基苯甲酰胺部分的过渡态类似物对氨基苯磺酰胺可抑制DHF合成酶。

磺胺药抗菌谱广,性质稳定,对肺炎、痢疾等疗效显著。

此外抗癌药阿糖胞苷、氨甲喋呤等均为酶的竞争性抑制剂。

§2.10 温度、pH等对酶反应影响(一)酶反应最适温度:使酶促反应速度达最大值的温度,见P378 图9-28,一般为钟罩形曲线。

每种酶在一定条件下都有其最适温度,动物一般35~400C,植物40~500C,微生物则差别较大,最高可达700C。

(二)最适pH:在此pH下酶促反应有最大速率。

见P379 图9-29,钟罩形曲线。

一般酶最适pH在5~8之间,动物6.5~8.0,植物及微生物4.5~6.5。

(三)激活剂:凡是能提高酶活性的物质都称为激活剂,大部分是无机离子或简单有机化合物。

不同的酶可有不同激活剂。

相关主题