当前位置:文档之家› 熵的定义

熵的定义

热力学第二定律和熵专业:能源与动力工程班级:能源14-3班姓名:王鑫学号:1462162330熵的表述在经典热力学中,可用增量定义为式中T为物质的热力学温度;dQ为熵增过程中加入物质的热量,下标“可逆”表示加热过程所引起的变化过程是可逆的。

若过程是不可逆的,则dS>(dQ/T)不可逆。

单位质量物质的熵称为比熵,记为S。

熵最初是根据热力学第二定律引出的一个反映自发过程不可逆性的物质状态参量。

热力学第二定律是根据大量观察结果总结出来的规律,有下述表述方式:①热量总是从高温物体传到低温物体,不可能作相反的传递而不引起其他的变化;②功可以全部转化为热,但任何热机不能全部地,连续不断地把所接受的热量转变为功(即无法制造第二类永动机);③在孤立系统中,实际发生过程,总使整个系统的熵值增大,此即熵增原理。

摩擦使一部分机械能不可逆地转变为热,使熵增加。

热量dQ由高温(T1)物体传至低温(T2)物体,高温物体的熵减少dS1=dQ/T1,低温物体的熵增加dS2=dQ/T2,把两个物体合起来当成一个系统来看,熵的变化是dS=dS2-dS1>0,即熵是增加的。

熵的相关定义1.比熵:在工程热力学中,单位质量工质的熵,称为比熵。

表达式为δq=Tds,s称为比熵,单位为J/ (kg·K) 或kJ/ (kg·K)。

2.熵流:系统与外界发生热交换,由热量流进流出引起的熵变。

熵流可正可负,视热流方向而定。

3.熵产:纯粹由不可逆因素引起的熵的增加。

熵产永远为正,其大小由过程不可逆性的大小决定,熵产为零时该过程为可逆过程。

熵产是不可逆程度的度量。

熵增原理孤立系统的熵永不自动减少,熵在可逆过程中不变,在不可逆过程中增加。

熵增加原理是热力学第二定律的又一种表述,它比开尔文、克劳修斯表述更为概括地指出了不可逆过程的进行方向;同时,更深刻地指出了热力学第二定律是大量分子无规则运动所具有的统计规律,因此只适用于大量分子构成的系统,不适用于单个分子或少量分子构成的系统实质:熵增原理指出:凡事是孤立系统总熵减小的过程都是不可能发生的,理想可逆的情况也只能实现总熵不变,实际过程都不可逆,所以实际热力过程总是朝着使孤立系统总熵增大的方向进行,dS>0。

熵增原理阐明了过程进行的方向。

熵增原理给出了系统达到平衡状态的判据。

孤立系统内部存在不平衡势差是过程自发进行的推动力。

随着过程进行,孤立系统内部由不平衡向平衡发展,总熵增大,当孤立系统总熵达到最大值时,过程停止进行,系统达到相应的平衡状态,这时的dS=0即为平衡判据。

因而,熵增原理指出了热过程进行的限度。

熵增原理还指出如果某一过程的进行,会导致孤立系中各物体的熵同时减小,虽然或者各有增减但其中总和使系统的熵减小,则这种过程,不能单独进行除非有熵增大的过程,作为补偿,使孤立系统总熵增大,至少保持不变。

从而,熵增原理揭示了热过程进行的条件。

例如,热转功,或热量由低温传向高温,这类过程会使孤立系统总熵减小,所以不能单独进行,必须有能导致熵增大的过程,作为补偿;而功转热,或热量由高温传向低温,这类过程本来就导致孤立系统总熵增大,故不需要补偿,能单独进行并且还可以用作补偿过程,非自发过程必须有自发过程相伴而行,原因于此。

孤立系统熵增原理全面透彻的揭示了热过程进行的方向,限度和条件,这些正是热力学第二定律的实质。

由于第二定律的各种说法都可以归结于熵增原理,又总能将任何系统与相关物体,相关环境一起归入一个孤立系统,所以可以认为dS>=0,是热力学第二定律数学表达式的一种最基本的形式。

热力学第二定律热力学第二定律,热力学基本定律之一,其表述为:不可能把热从低温物体传到高温物体而不产生其他影响,或不可能从单一热源取热使之完全转换为有用的功而不产生其他影响,或不可逆热力过程中熵的微增量总是大于零。

又称“熵增定律”,表明了在自然过程中,一个孤立系统的总混乱度(即“熵”)不会减小。

表述1.克劳修斯表述不可能把热量从低温物体传向高温物体而不引起其它变化。

英国物理学家开尔文(原名汤姆逊)在研究卡诺和焦耳的工作时,发现了某种不和谐:按照能量守恒定律,热和功应该是等价的,可是按照卡诺的理论,热和功并不是完全相同的,因为功可以完全变成热而不需要任何条件,而热产生功却必须伴随有热向冷的耗散。

他在1849年的一篇论文中说:“热的理论需要进行认真改革,必须寻找新的实验事实。

”同时代的克劳修斯也认真研究了这些问题,他敏锐地看到不和谐存在于卡诺理论的内部。

他指出卡诺理论中关于热产生功必须伴随着热向冷的传递的结论是正确的,而热的量(即热质)不发生变化则是不对的。

克劳修斯在1850年发表的论文中提出,在热的理论中,除了能量守恒定律以外,还必须补充另外一条基本定律:“没有某种动力的消耗或其他变化,不可能使热从低温转移到高温。

”这条定律后来被称作热力学第二定律。

[2]2.开尔文表述不可能制成一种循环动作的热机,从单一热源取热,使之完全变为功而不引起其它变化。

这是从能量消耗的角度说的。

开尔文表述还可以表述成:第二类永动机不可能实现[3]。

开尔文的表述更直接指出了第二类永动机的不可能性。

所谓第二类永动机,是指某些人提出的例如制造一种从海水吸取热量,利用这些热量做功的机器。

这种想法,并不违背能量守恒定律,因为它消耗海水的内能。

大海是如此广阔,整个海水的温度只要降低一点点,释放出的热量就是天文数字,对于人类来说,海水是取之不尽、用之不竭的能量源泉,因此这类设想中的机器被称为第二类永动机。

而从海水吸收热量做功,就是从单一热源吸取热量使之完全变成有用功并且不产生其他影响,开尔文的说法指出了这是不可能实现的,也就是第二类永动机是不可能实现的。

3.定律的其他表述除上述几种表述外,热力学第二定律还有其他表述。

如针对焦耳热功当量实验的普朗克表述:“不可存在一个机器,在循环动作中把以重物升高而同时使一热库冷却。

”以及较为近期的黑首保劳-肯南表述:“对于一个有给定能量,物质组成,参数的系统,存在这样一个稳定的平衡态:其他状态总可以通过可逆过程达到之。

”可以论证,这些表述与克劳修斯表述以及开尔文表述是等价的。

热力学第二定律说明:热量可以自发地从较热的物体传递到较冷的物体,但不可能自发地从较冷的物体传递到较热的物体(克劳修斯表述);也可表述为:两物体相互摩擦的结果使功转变为热,但却不可能将这摩擦热重新转变为功而不产生其他影响。

对于扩散、渗透、混合、燃烧、电热和磁滞等热力过程,虽然其逆过程仍符合热力学第一定律,但却不能自发地发生。

热力学第一定律未解决能量转换过程中的方向、条件和限度问题,这恰恰是由热力学第二定律所规定。

过程第二定律指出在自然界中任何的过程都不可能自动地复原,要使系统从终态回到初态必需借助外界的作用,由此可见,热力学系统所进行的不可逆过程的初态和终态之间有着重大的差异,这种差异决定了过程的方向,人们就用态函数熵来描述这个差异,从理论上可以进一步证明:可逆绝热过程Sf=Si,不可逆绝热过程Sf>Si,式中Sf和Si分别为系统的最终和最初的熵。

也就是说,在孤立系统内对可逆过程,系统的熵总保持不变;对不可逆过程,系统的熵总是增加的。

这个规律叫做熵增加原理。

这也是热力学第二定律的又一种表述。

熵的增加表示系统从几率小的状态向几率大的状态演变,也就是从比较有规则、有秩序的状态向更无规则,更无秩序的状态演变。

熵体现了系统的统计性质。

条件1.该系统是线性的;2.该系统全部是各向同性的。

另外有部分推论:比如热辐射:恒温黑体腔内任意位置及任意波长的辐射强度都相同,且在加入任意光学性质的物体时,腔内任意位置及任意波长的辐射强度都不变。

热力学第二定律和熵的部分计算公式1.热力学第二定律的数学表达式即克劳修斯不等式:式中,对不可逆过程应取用不等号,指系统实际过程热,T指环境温度,对可逆过程应取用等号,指可逆过程热,T为系统温度。

2.熵增原理及熵判据(1)熵增原理:(2)环境(su)熵变计算:;其中环境温度T sy恒定,而Q sy指系统实际过程热。

(3)熵判据3.系统熵变的计算(由熵的定义式计算)(将S视为x,y双变量函数,则由全微分计算)对于热力学第二定律和熵的理解热力学第二定律说明,在实际过程中熵的增量总是大于零的.能量的转化是有方向的,实际过程中随着能量转换的进行.系统和环境的总熵不断地增加.熵的概念是在热力学第二定律的基础上确立起来的.与能量的概念类似,它也是与某一状态所对应的函数.热力学第二定律可以用熵的增量来表达:dS≥Q/T.其中dS,是微过程中熵的增量,等号对应可逆过程,而不等号对应不可逆过程.它表明,可逆过程的熵变可以用这一过程中热量与温度的比值来计算,而不可逆过程的熵变一定大于这一过程中热量与温度的比值.对于与外界既无能量交换又无物质交换的孤立系统,必有dQ=0,从而有ds≥O,这就是熵增原理,即:孤立系统的实际过程总是向着熵增加的方向进行的,或者说,孤立系统的熵永不减少.它表明随着孤立系统由非平衡态趋于平衡态,其熵单调增大,当系统达到平衡态时,熵达到最大值.热力学第二定律就是熵增加原理.熵的变化和最大值确定了孤立系统过程进行的方向和限度,可以说,熵增原理描述了内能与其他形式能量自发转换的方向和转换完成的程度,即:能量转化的方向是朝着熵增加的方向进行,并且随着能量转换的进行,系统趋于平衡态,熵值达到最大.在此过程中虽然能量总值不变,但可供利用或转换的能量却越来越少了.熵和能从两个不同角度描写系统的状态.能从正面度量运动转化的能力,能越大,运动转化的能力也越大,并且转化过程中能量总值保持不变;熵是从运动不能转化的一面度量运动,表示运动转化已经完成的程度,并且在没有外界作用的情况下,随着系统越来越接近平衡态,系统的熵会越来越大.熵恒增意味着能“贬值"。

相关主题