当前位置:文档之家› 熵的定义

熵的定义

熵的定义以下是为大家整理的熵的定义的相关范文,本文关键词为定义,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在教育文库中查看更多范文。

热力学第二定律和熵专业:能源与动力工程班级:能源14-3班姓名:王鑫学号:1462162330熵的表述在经典热力学中,可用增量定义为式中T为物质的热力学温度;dQ为熵增过程中加入物质的热量,下标“可逆”表示加热过程所引起的变化过程是可逆的。

若过程是不可逆的,则ds>(dQ/T)不可逆。

单位质量物质的熵称为比熵,记为s。

熵最初是根据热力学第二定律引出的一个反映自发过程不可逆性的物质状态参量。

热力学第二定律是根据大量观察结果总结出来的规律,有下述表述方式:①热量总是从高温物体传到低温物体,不可能作相反的传递而不引起其他的变化;②功可以全部转化为热,但任何热机不能全部地,连续不断地把所接受的热量转变为功(即无法制造第二类永动机);③在孤立系统中,实际发生过程,总使整个系统的熵值增大,此即熵增原理。

摩擦使一部分机械能不可逆地转变为热,使熵增加。

热量dQ由高温(T1)物体传至低温(T2)物体,高温物体的熵减少ds1=dQ/T1,低温物体的熵增加ds2=dQ/T2,把两个物体合起来当成一个系统来看,熵的变化是ds=ds2-ds1>0,即熵是增加的。

熵的相关定义1.比熵:在工程热力学中,单位质量工质的熵,称为比熵。

表达式为δq=Tds,s称为比熵,单位为J/(kg·K)或kJ/(kg·K)。

2.熵流:系统与外界发生热交换,由热量流进流出引起的熵变。

熵流可正可负,视热流方向而定。

3.熵产:纯粹由不可逆因素引起的熵的增加。

熵产永远为正,其大小由过程不可逆性的大小决定,熵产为零时该过程为可逆过程。

熵产是不可逆程度的度量。

熵增原理孤立系统的熵永不自动减少,熵在可逆过程中不变,在不可逆过程中增加。

熵增加原理是热力学第二定律的又一种表述,它比开尔文、克劳修斯表述更为概括地指出了不可逆过程的进行方向;同时,更深刻地指出了热力学第二定律是大量分子无规则运动所具有的统计规律,因此只适用于大量分子构成的系统,不适用于单个分子或少量分子构成的系统实质:熵增原理指出:凡事是孤立系统总熵减小的过程都是不可能发生的,理想可逆的情况也只能实现总熵不变,实际过程都不可逆,所以实际热力过程总是朝着使孤立系统总熵增大的方向进行,ds>0。

熵增原理阐明了过程进行的方向。

熵增原理给出了系统达到平衡状态的判据。

孤立系统内部存在不平衡势差是过程自发进行的推动力。

随着过程进行,孤立系统内部由不平衡向平衡发展,总熵增大,当孤立系统总熵达到最大值时,过程停止进行,系统达到相应的平衡状态,这时的ds=0即为平衡判据。

因而,熵增原理指出了热过程进行的限度。

熵增原理还指出如果某一过程的进行,会导致孤立系中各物体的熵同时减小,虽然或者各有增减但其中总和使系统的熵减小,则这种过程,不能单独进行除非有熵增大的过程,作为补偿,使孤立系统总熵增大,至少保持不变。

从而,熵增原理揭示了热过程进行的条件。

例如,热转功,或热量由低温传向高温,这类过程会使孤立系统总熵减小,所以不能单独进行,必须有能导致熵增大的过程,作为补偿;而功转热,或热量由高温传向低温,这类过程本来就导致孤立系统总熵增大,故不需要补偿,能单独进行并且还可以用作补偿过程,非自发过程必须有自发过程相伴而行,原因于此。

孤立系统熵增原理全面透彻的揭示了热过程进行的方向,限度和条件,这些正是热力学第二定律的实质。

由于第二定律的各种说法都可以归结于熵增原理,又总能将任何系统与相关物体,相关环境一起归入一个孤立系统,所以可以认为ds>=0,是热力学第二定律数学表达式的一种最基本的形式。

热力学第二定律热力学第二定律,热力学基本定律之一,其表述为:不可能把热从低温物体传到高温物体而不产生其他影响,或不可能从单一热源取热使之完全转换为有用的功而不产生其他影响,或不可逆热力过程中熵的微增量总是大于零。

又称“熵增定律”,表明了在自然过程中,一个孤立系统的总混乱度(即“熵”)不会减小。

表述1.克劳修斯表述不可能把热量从低温物体传向高温物体而不引起其它变化。

英国物理学家开尔文(原名汤姆逊)在研究卡诺和焦耳的工作时,发现了某种不和谐:按照能量守恒定律,热和功应该是等价的,可是按照卡诺的理论,热和功并不是完全相同的,因为功可以完全变成热而不需要任何条件,而热产生功却必须伴随有热向冷的耗散。

他在1849年的一篇论文中说:“热的理论需要进行认真改革,必须寻找新的实验事实。

”同时代的克劳修斯也认真研究了这些问题,他敏锐地看到不和谐存在于卡诺理论的内部。

他指出卡诺理论中关于热产生功必须伴随着热向冷的传递的结论是正确的,而热的量(即热质)不发生变化则是不对的。

克劳修斯在1850年发表的论文中提出,在热的理论中,除了能量守恒定律以外,还必须补充另外一条基本定律:“没有某种动力的消耗或其他变化,不可能使热从低温转移到高温。

”这条定律后来被称作热力学第二定律。

[2]2.开尔文表述不可能制成一种循环动作的热机,从单一热源取热,使之完全变为功而不引起其它变化。

这是从能量消耗的角度说的。

开尔文表述还可以表述成:第二类永动机不可能实现[3]。

开尔文的表述更直接指出了第二类永动机的不可能性。

所谓第二类永动机,是指某些人提出的例如制造一种从海水吸取热量,利用这些热量做功的机器。

这种想法,并不违背能量守恒定律,因为它消耗海水的内能。

大海是如此广阔,整个海水的温度只要降低一点点,释放出的热量就是天文数字,对于人类来说,海水是取之不尽、用之不竭的能量源泉,因此这类设想中的机器被称为第二类永动机。

而从海水吸收热量做功,就是从单一热源吸取热量使之完全变成有用功并且不产生其他影响,开尔文的说法指出了这是不可能实现的,也就是第二类永动机是不可能实现的。

3.定律的其他表述除上述几种表述外,热力学第二定律还有其他表述。

如针对焦耳热功当量实验的普朗克表述:“不可存在一个机器,在循环动作中把以重物升高而同时使一热库冷却。

”以及较为近期的黑首保劳-肯南表述:“对于一个有给定能量,物质组成,参数的系统,存在这样一个稳定的平衡态:其他状态总可以通过可逆过程达到之。

”可以论证,这些表述与克劳修斯表述以及开尔文表述是等价的。

热力学第二定律说明:热量可以自发地从较热的物体传递到较冷的物体,但不可能自发地从较冷的物体传递到较热的物体(克劳修斯表述);也可表述为:两物体相互摩擦的结果使功转变为热,但却不可能将这摩擦热重新转变为功而不产生其他影响。

对于扩散、渗透、混合、燃烧、电热和磁滞等热力过程,虽然其逆过程仍符合热力学第一定律,但却不能自发地发生。

热力学第一定律未解决能量转换过程中的方向、条件和限度问题,这恰恰是由热力学第二定律所规定。

形成①热力学第二定律是热力学的基本定律之一,是指热永远都只能由热处转到冷处(在自然状态下)。

它是关于在有限空间和时间内,一切和热运动有关的物理、化学过程具有不可逆性的经验总结。

热力学第二定律分别由德国科学家克劳修斯(clausius)在1850年提出的以及开尔文于1851年提出的。

这些表述都是等效的。

在克劳修斯的讲法中,指出了在自然条件下热量只能从高温物体向低温物体转移,而不能由低温物体自动向高温物体转移,也就是说在自然条件下,这个转变过程是不可逆的。

要使热传递方向倒转过来,只有靠消耗功来实现。

在开尔文的讲法中指出,自然界中任何形式的能都会很容易地变成热,而反过来热却不能在不产生其他影响的条件下完全变成其他形式的能,从而说明了这种转变在自然条件下也是不可逆的。

热机能连续不断地将热变为机械功,一定伴随有热量的损失。

第二定律和第一定律不同,第一定律否定了创造能量和消灭能量的可能性,第二定律阐明了过程进行的方向性,否定了以特殊方式利用能量的可能性。

②人们曾设想制造一种能从单一热源取热,使之完全变为有用功而不产生其他影响的机器,这种空想出来的热机叫第二类永动机。

它并不违反热力学第一定律,但却违反热力学第二定律。

有人曾计算过,地球表面有10亿立方千米的海水,以海水作单一热源,若把海水的温度哪怕只降低0.25度,放出热量,将能变成一千万亿度的电能足够全世界使用一千年。

但只用海洋做为单一热源的热机是违反上述第二种讲法的,因此要想制造出热效率为百分之百的热机是绝对不可能的。

③从分子运动论的观点看,作功是大量分子的有规则运动,而热运动则是大量分子的无规则运动。

显然无规则运动要变为有规则运动的几率极小,而有规则的运动变成无规则运动的几率大。

一个不受外界影响的孤立系统,其内部自发的过程总是由几率小的状态向几率大的状态进行,从此可见热是不可能自发地变成功的。

④热力学第二定律只能适用于由很大数目分子所构成的系统及有限范围内的宏观过程。

而不适用于少量的微观体系,也不能把它推广到无限的宇宙。

⑤根据热力学第零定律,确定了态函数——温度;根据热力学第一定律,确定了态函数——内能和焓;根据热力学第二定律,也可以确定一个新的态函数——熵。

可以用熵来对第二定律作定量的表述。

过程第二定律指出在自然界中任何的过程都不可能自动地复原,要使系统从终态回到初态必需借助外界的作用,由此可见,热力学系统所进行的不可逆过程的初态和终态之间有着重大的差异,这种差异决定了过程的方向,人们就用态函数熵来描述这个差异,从理论上可以进一步证明:可逆绝热过程sf=si,不可逆绝热过程sf>si,式中sf和si分别为系统的最终和最初的熵。

也就是说,在孤立系统内对可逆过程,系统的熵总保持不变;对不可逆过程,系统的熵总是增加的。

这个规律叫做熵增加原理。

这也是热力学第二定律的又一种表述。

熵的增加表示系统从几率小的状态向几率大的状态演变,也就是从比较有规则、有秩序的状态向更无规则,更无秩序的状态演变。

熵体现了系统的统计性质。

条件1.该系统是线性的;2.该系统全部是各向同性的。

另外有部分推论:比如热辐射:恒温黑体腔内任意位置及任意波长的辐射强度都相同,且在加入任意光学性质的物体时,腔内任意位置及任意波长的辐射强度都不变。

热力学第二定律和熵的部分计算公式1.热力学第二定律的数学表达式即克劳修斯不等式:式中,对不可逆过程应取用不等号,可逆过程应取用等号,2.熵增原理及熵判据指系统实际过程热,T指环境温度,对指可逆过程热,T为系统温度。

(1)熵增原理:(2)环境(su)熵变计算:最后,小编希望文章对您有所帮助,如果有不周到的地方请多谅解,更多相关的文章正在创作中,希望您定期关注。

谢谢支持!。

相关主题