当前位置:文档之家› 【预赛三一自招】2020高中物理竞赛习题专题四:刚体动力学(Word版含答案)

【预赛三一自招】2020高中物理竞赛习题专题四:刚体动力学(Word版含答案)

高中物理竞赛习题专题四:刚体动力学1.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( )(A) 角速度从小到大,角加速度不变(B) 角速度从小到大,角加速度从小到大(C) 角速度从小到大,角加速度从大到小(D) 角速度不变,角加速度为零2.假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的( )(A) 角动量守恒,动能守恒 (B) 角动量守恒,机械能守恒(C) 角动量不守恒,机械能守恒 (D) 角动量不守恒,动量也不守恒(E) 角动量守恒,动量也守恒3.水分子的形状如图所示,从光谱分析知水分子对AA′轴的转动惯量JAA′=1.93 ×10-47 kg·m2 ,对BB′轴转动惯量JBB′=1.14 ×10-47 kg·m2,试由此数据和各原子质量求出氢和氧原子的距离D 和夹角θ.假设各原子都可当质点处理.4.用落体观察法测定飞轮的转动惯量,是将半径为R 的飞轮支承在O点上,然后在绕过飞轮的绳子的一端挂一质量为m 的重物,令重物以初速度为零下落,带动飞轮转动(如图).记下重物下落的距离和时间,就可算出飞轮的转动惯量.试写出它的计算式.(假设轴承间无摩擦).5.质量为m1 和m2 的两物体A、B 分别悬挂在图(a)所示的组合轮两端.设两轮的半径分别为R 和r,两轮的转动惯量分别为J1 和J2 ,轮与轴承间、绳索与轮间的摩擦力均略去不计,绳的质量也略去不计.试求两物体的加速度和绳的张力.6.如图所示,一通风机的转动部分以初角速度ω0 绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量.若转动部分对其轴的转动惯量为J,问:(1) 经过多少时间后其转动角速度减少为初角速度的一半?(2) 在此时间内共转过多少转?7.如图所示,一长为2l 的细棒AB,其质量不计,它的两端牢固地联结着质量各为m的小球,棒的中点O 焊接在竖直轴z上,并且棒与z轴夹角成α角.若棒在外力作用下绕z 轴(正向为竖直向上)以角直速度ω=ω0(1 -e-t ) 转动,其中ω0 为常量.求(1)棒与两球构成的系统在时刻t 对z 轴的角动量;(2) 在t =0时系统所受外力对z 轴的合外力矩.8.在光滑的水平面上有一木杆,其质量m1 =1.0 kg,长l =40cm,可绕通过其中点并与之垂直的轴转动.一质量为m2 =10g 的子弹,以v =2.0×102 m· s-1 的速度射入杆端,其方向与杆及轴正交.若子弹陷入杆中,试求所得到的角速度.9.半径分别为r1 、r2 的两个薄伞形轮,它们各自对通过盘心且垂直盘面转轴的转动惯量为J1 和J2 .开始时轮Ⅰ以角速度ω0 转动,问与轮Ⅱ成正交啮合后(如图所示),两轮的角速度分别为多大?10.一质量为1.12 kg,长为1.0 m 的均匀细棒,支点在棒的上端点,开始时棒自由悬挂.以100 N 的力打击它的下端点,打击时间为0.02 s.(1) 若打击前棒是静止的,求打击时其角动量的变化;(2) 棒的最大偏转角.(3)打击瞬间O点杆收到的作用力。

11.地球对自转轴的转动惯量为0.33 mER2 ,其中mE为地球的质量,R为地球的半径.(1) 求地球自转时的动能;(2) 由于潮汐的作用,地球自转的速度逐渐减小,一年内自转周期增加3.5 ×10-5 s,求潮汐对地球的平均力矩.12.为使运行中飞船停止绕其中心轴转动,一种可能方案是将质量均为m 的两质点A、B,用长为l 的两根轻线系于圆盘状飞船的直径两端(如图所示).开始时轻线拉紧两质点靠在盘的边缘,圆盘与质点一起以角速度旋转;当质点离开圆盘边逐渐伸展至连线沿径向拉直的瞬时,割断质点与飞船的连线.为使此时的飞船正好停止转动,连线应取何长度? (设飞船可看作质量为m′、半径为R的匀质圆盘)13.一长为l、质量为m 的均匀细棒,在光滑的平面上绕质心作无滑动的转动,其角速度为ω.若棒突然改绕其一端转动,求:(1) 以端点为转轴的角速度ω′;(2) 在此过程中转动动能的改变.14.如图所示,一绕有细绳的大木轴放置在水平面上,木轴质量为m,外轮半径为R1 ,内柱半径为R2 ,木轴对中心轴O 的转动惯量为JC .现用一恒定外力F 拉细绳一端,设细绳与水平面夹角θ保持不变,木轴滚动时与地面无相对滑动.求木轴滚动时的质心加速度aC 和木轴绕中心轴O 的角加速度α.答案解析1C 2B 3.解 由图可得θd m J H A A 22sin 2=' θd m J H B B 22cos 2='此二式相加,可得22d m J J H B B A A =+''则m1059.9211-''⨯=+=HB B A A m J J d由二式相比,可得θJ J B B A A 2tan /='' 则o3.521.141.93arctan arctan===''B B A A J J θ4.解1 设绳子的拉力为F T,对飞轮而言,根据转动定律,有 αJ R F T = (1)而对重物而言,由牛顿定律,有ma F mg T =- (2)由于绳子不可伸长,因此,有αR a = (3)重物作匀加速下落,则有221at h =(4)由上述各式可解得飞轮的转动惯量为⎪⎪⎭⎫⎝⎛-=1222h gt mR J5.解 分别对两物体及组合轮作受力分析,如图(b).根据质点的牛顿定律和刚体的转动定律,有111111a m F g m F P T T =-='- (1) 222222a m g m F P F T T =-=-' (2)()αJ J r F R F T T 2121+=- (3) 11T T F F =',22T T F F =' (4)由角加速度和线加速度之间的关系,有αR a =1 (5) αr a =2 (6)解上述方程组,可得gR r m R m J J rm R m a 222121211+++-=grr m R m J J rm R m a 222121212+++-=gm r m R m J J Rr m r m J J F T 1222121221211++++++= g m r m R m J J Rr m R m J J F T 2222121121212++++++=6.解 (1) 通风机叶片所受的阻力矩为M =-C ω,由转动定律M =J α,可得叶片的角加速度为J ωC t ωα-==d d (1)根据初始条件对式(1)积分,有t J C ωωt ωωd d 00⎰⎰-= 由于C 和J 均为常量,得JCt e ωω/0-= (2)当角速度由ω0 → 12 ω0 时,转动所需的时间为2ln C J t =(2) 根据初始条件对式(2)积分,有te ωθJ Ct tθd d /000-⎰⎰=即 C ωJ θ20=在时间t 内所转过的圈数为C ωJ θN π4π20==7.解 (1) 两小球对z 轴的转动惯量为()()222sin 2sin 22αl m αl m mr J ===,则系统对z轴的角动量为()αe ωml mr ωJ L t 2022sin 122--===此处也可先求出每个小球对z 轴的角动量后再求和. (2) 由角动量定理得()[]αe ωml t t L M t 202sin 12d d d d --==te αωml -=202sin 2t =0时,合外力矩为αωml M 202sin 2=此处也可先求解系统绕z 轴的角加速度表达式,即t e ωt ωα-==0d d ,再由M =J α求得M .8.解 根据角动量守恒定理()ωJ J ωJ '+=212式中()2222/l m J =为子弹绕轴的转动惯量,J 2ω为子弹在陷入杆前的角动量,ω=2v/l 为子弹在此刻绕轴的角速度.12/211l m J =为杆绕轴的转动惯量.可得杆的角速度为()1212212s 1.2936-=+=+='m m m J J ωJ ωv9.解 设相互作用力为F ,在啮合的短时间Δt 内,根据角动量定理,对轮Ⅰ、轮Ⅱ分别有()0111ΔωωJ t F r -=- (1)222ΔωJ t F r = (2)两轮啮合后应有相同的线速度,故有2211ωr ωr = (3)由上述各式可解得啮合后两轮的角速度分别为210222122011r ωJ r J r ωJ ω+=10.解 (1) 由刚体的角动量定理得120s m kg 0.2d -⋅⋅====⎰t ΔFl t M ωJ L Δ(2) 取棒和地球为一系统,并选O 处为重力势能零点.在转动过程中,系统的机械能守恒,即()θmgl ωJ cos 1212120-=由式(1)、(2)可得棒的偏转角度为8388Δ31arccos o222'=⎪⎪⎭⎫ ⎝⎛-=gl m t F θ11.解 (1) 地球的质量m E =5.98 ×1024kg ,半径R =6.37 ×106m ,所以,地球自转的动能J 1012.2/33.022*******⨯=⨯==T R m πωJ E E K(2) 对式T ωπ2=两边微分,可得T T ωd π2d 2-=当周期变化一定量时,有TωT T ωΔπ2Δπ2Δ22-=-= (1)由于地球自转减慢而引起动能的减少量为TE ωT J ωωωJ E K K ΔπΔπ2ΔΔ3-=-== (2)又根据动能定理K E θM W ΔΔ== (3)由式(2)、(3)可得潮汐的摩擦力矩为m N 1047.7π2Δ22⋅⨯==-n T ωE M K式中n 为一年中的天数(n =365),ΔT 为一天中周期的增加量.12.解 飞船绕其中心轴的转动惯量为2121R m J '=,两质点在起始时和轻线割断瞬间的转动惯量分别为222mR J =和()222l R m J +='.由于过程中系统的角动量守恒,为使轻线沿径向拉直时,飞船转动正好停止,则有 ()()ωl R m ωJ J '+=+2212 (1)又根据过程中系统的机械能守恒,有()()2222122121ωl R m ωJ J '+=+ (2)由上述两式可解得⎪⎪⎭⎫ ⎝⎛-'+=141m m R l13.解 (1) 棒的质心的动量定理为c m p t F v ==ΔΔ式中F 是棒所受的平均力,v C 为棒质心的速度.棒在转动过程中受到外力矩作用,根据角动量定理,有ωJ ωJ t F -'=-Δ21式中J 为棒绕质心的转动惯量(即2121ml J =).而根据角量与线量的关系θR x cos =可解得ωωml J J ω41412=+='(2) 在此过程中转动动能的改变为22223212121ωml ωJ ωJ E ΔK -=-''=14.解 设木轴所受静摩擦力F f 如图所示,则有C ma F θF =-f cos (1)αJ R F FR C =+1f 2 (2)αR a C 1= (3)由(1)、(2)、(3)式可得FmR J R R θR a C C 212121cos ++=F mR J R θR R a αC C 21211cos ++==。

相关主题