第11章 常微分方程习题课一. 内容提要1.基本概念含有一元未知函数)(x y (即待求函数)的导数或微分的方程,称为常微分方程;其中出现的)(x y 的最高阶导数的阶数称为此微分方程的阶;使微分方程在区间I 上成为恒等式的函数=y )(x ϕ称为此微分方程在I 上的解;显然一个微分方程若有解,则必有无穷多解;若n 阶微分方程的解中含有n 个不可合并的任意常数,则称其为此微分方程的通解;利用n 个独立的附加条件(称为定解条件)定出了所有任意常数的解称为特解;微分方程连同定解条件一起,合称为一个定解问题;当定解条件是初始条件(给出)1(,,,-'n y y y 在同一点0x 处的值)时,称为初值问题.2.一阶微分方程),(y x f y ='的解法(1)对于可分离变量方程)()(d d y x xy ψϕ=, 先分离变量(当0)(≠y ψ时)得x x y ψy d )()(d ϕ=, 再两边积分即得通解 C x x y y +=⎰⎰d )()(d ϕψ.(2)对于齐次方程d d y y f x x ⎛⎫= ⎪⎝⎭, 作变量代换x y u =,即xu y =,可将其化为可分离变量的方程,分离变量后,积分得C x x u u f u +=-⎰⎰d )(d ,再以x y 代替u 便得到齐次方程的通解.(3)形如)(111d d c y b x a c by ax f x y ++++=的方程, ①若1,c c 均为零,则是齐次方程;②若1,c c 不全为零,则不是齐次方程,但当k b b a a ==11时,只要作变换y b x a v 11+=,即可化为可分离变量的方程111)(d d a c v c kv f b x v +++=; 当11b b a a ≠时,只要作平移变换⎩⎨⎧-=-=00y y Y x x X ,即⎩⎨⎧+=+=00y Y y x X x (其中),(00y x 是线性方程组⎩⎨⎧=++=++0 0111c y b x a c by ax 的惟一解),便可化为齐次方程)(d d 11Yb X a bY aX f X Y ++=. (4)全微分方程若方程0d ),(d ),(=+y y x Q x y x P 之左端是某个二元函数),(y x u u =的全微分,则称其为全微分方程,显然C y x u =),(即为通解,而原函数),(y x u 可用曲线积分法、不定积分法或观察法求得. 通常用充要条件xQ y P ∂∂=∂∂来判定0d ),(d ),(=+y y x Q x y x P 是否为全微分方程.对于某些不是全微分方程的0d ),(d ),(=+y y x Q x y x P ,可乘上一个函数),(,y x μ使之成为全微分方程0d ),(d ),(=+y y x Q x y x P μμ(注意到当0),(≠y x μ时0d ),(d ),(=+y y x Q x y x P μμ与原方程同解),并称),(,y x μ为积分因子;一般说来,求积分因子比较困难,但有时可通过观察得到.(5)一阶线性微分方程)()(x Q y x p y =+'的通解公式当)(x Q 不恒为零时,称其为一阶线性非齐次微分方程;当)(x Q 恒为零,时,即0)(=+'y x p y 称为一阶线性齐次微分方程,这是一个可分离变量的方程,易知其通解为⎰=-x x p C Y d )(e ;由此用“常数变易法”即可得到非齐次微分方程的通解)(d e )(e d )(d )(⎰⎰+⎰=-x x Q C y x x p x x p .(6)对于Bernoulli 方程n y x Q y x p y )()(=+' (1,0≠n ),只需作变换n y z -=1,即可化为一阶线性方程)()1()()1(d d x Q n z x p n xz -=-+. 3.高阶方程的降阶解法以下三种方程可通过变量代换降成一阶方程再求解:(1)对于方程)()(x f y n =,令)1(-=n y z 化为)(x f z =';在实际求解中,只要对方程连续积分n 次,即得其通解n n n n C x C x C x x f x y ++++=--⎰⎰111d )(d次. (2)对于),(y x f y '=''(不显含y ),作变换y P '=,则P y '='',于是 化一阶方程),(P x f P =';显然对),()1()(-=n n y x f y 可作类似处理.(3)对于),(y y f y '=''(不显含x ),作变换y P '=,则y P P y d d ='',于是可化为一阶方程),(d d P y f yP P =.4.线性微分方程解的结构(1)线性齐次微分方程解的性质对于线性齐次微分方程来说,解的线性组合仍然是解.(2)线性齐次微分方程解的结构若n y y y ,,,21 是n 阶线性齐次微分方程的线性无关的解,则其通解为n n y c y c y c Y +++= 2211.(3)线性非齐次微分方程解的结构线性非齐次微分方程的通解y ,等于其对应的齐次方程的通解Y 与其自身的一个特解*y 之和,即*+=y Y y .(4)线性非齐次微分方程的叠加原理1 设*k y (m k ,,2,1 =)是方程)()()()(1)1(1)(x f y x p y x p y x p y k n n n n =+'+++--的解,则∑=*mk k y 1是方程∑=--=+'+++mk k n n n n x f y x p y x p y x p y11)1(1)()()()()( 的解. 2 若实变量的复值函数)(i )(x v x u +是方程=+'+++--y x p y x p y x p y n n n n )()()(1)1(1)( )(i )(21x f x f +的解,则此解的实部)(x u 是方程)()()()(11)1(1)(x f y x p y x p y x p y n n n n =+'+++--的解;虚部)(x v 是方程)()()()(21)1(1)(x f y x p y x p y x p y n n n n =+'+++--的解.(5)线性非齐次方程的解与对应的齐次方程解的关系线性非齐次方程任意两个解的差是对应的齐次方程的解.5.常系数线性微分方程的解法(1)求常系数线性齐次微分方程通解的“特征根法”1 写出01)1(1)(=+'+++--y p y p y p y n n n n 的特征方程0111=++++--n n n n p r p r p r ,并求特征根;2 根据特征根是实根还是复根以及重数写出通解中对应的项(见(2)下列两种情况可用“待定系数法”求常系数线性非齐次方程的特解1对于x m x P x f λe )()(=,应设特解x m k x Q x y λe )(=*x m m m m k a x a x a x a x λ)e (1110++++=-- , 其中k 等于λ为特征根的重数(n k ≤≤0),01,,,m a a a 是待定系数.将*y 代入原方程,可定出01,,,m a a a ,从而求得*y .2对于()e [()cos sin ]x l s f x P x x P x λωω=+ (0≠ω),应设特解]s i n )(c o s )([e x x T x x R x y m m x k ωωλ+=*, 其中k 等于i μλω=+为特征根的重数(20n k ≤≤),)(),(x T x R m m 是待定的},m a x {s l m =次多项式.将*y 代原方程,即可定出)(),(x T x R m m ,从而求得*y .或因为()e [()cos ()sin ]x l s f x P x x P x x λωω=+Re e (()i ())(cos isin )x l s Px P x x x λωω⎡⎤=-+⎣⎦ (i )Re ()e x m Q x λω+⎡⎤=⎣⎦(其中()m Q x ()i ()l s P x P x =-是max{,}m l s =次的复系数多项式).对于方程()(1)11n n n n y p y p y p y --'++++=(i )()e x m Q x λω+可设其特解 (i )()e k x m Y x Z x λω*+=,(()m Z x 是m 次待定复系数多项式,k 等于i μλω=+为特征根的重数),将(i )()e k x m Y x Z x λω*+=代入方程()(1)11n n n n y p y p y p y --'++++=(i )()e x m Q x λω+中,可定出()m Z x ,于是(i )()e k x m Y x Z x λω*+=,从而原方程的特解Re y Y **=.3特例(i )()(1)(i )11()e ()cos ()e ()sin ()e ,()e x x l l x l n n x n n l f x P x x f x P x x Y Z x y p y p y p y P x λλλωλωωω*+-+-==='++++= 当或时,设将其代入,求得,Re Im .Y y Y y Y *****==则原方程的一个特解或6.Euler 方程的解法(1) 形如)(1)1(11)(x f y p y x p y x p y x n n n n n n =+'+++---的线性变系数微分方程称为Euler 方程,是一种可化为常系数的变系数微分方程.(2) 解法只需作变换 t x e =,即x t ln =,即可将其化为常系数线性微分方程.若引入微分算子td d D =,则 y y x D =',y y x )1D(D 2-='',, y n y x n n )1(D )1D(D )(+--= , 于是很容易写出对应的齐次方程的特征方程.7. 应用常微分方程解决实际问题的一般步骤(1) 在适当的坐标系下,设出未知函数)(x y y =,据已知条件写出相关的量;(2) 根据几何、物理、经济及其它学科的规律(往往是瞬时规律或局部近似规律)建立微分方程;(3) 提出定解条件;(4) 求定解问题的解;(5) 分析解的性质,用实践检验解的正确性.二.课堂练习(除补充题外,均选自复习题12)1.填空题(1)已知2e 1x y =及2e 2x x y =是方程0)24(42=-+'-''y x y x y 的解,则其通解为 )(e 212x C C x +.解:因2e 1x y =,2e 2x x y =都是解,且线性无关,故)(e 212x C C x +是通解.(2)设一质量为m 的物体,在空气中由静止开始下落 .若空气阻力为v k R =,则其下落的距离s 所满足的微分方程是s g m''=, 初始条件是 (0)0,(0)0 s s '==. 解:因为ma F =,而v k mg F -=,s v '=,s a ''=,故得方程s m s k mg ''='-,化简得g s mk ='+''s ; 在如图所示的坐标系下,初始条件为 0)0(,0)0(='=s s . (3)微分方程x x y y y e 62=+'-''的特解*y 的形式为 )e ( 2x b ax x +.解: 因为特征方程为0122=+-r r ,121==r r ,而1=λ是二重特征根,故应设x b ax x y )e (2+=*.(4)若x x x x y x y x y 522322221e e ,e ,++=+==都是线性非齐次微分方程)()()(x f y x q y x p y =+'+''的解,则其通解为25212 e e x x C C x ++.解:由线性非齐次方程的解与对应的齐次方程解的关系可O s (0)s ()s t知,x y y Y 2121e =-=, x y y Y 5232e =-=都是对应的齐次方程的解,且线性无关,故对应的齐次方程的通解为x x C C Y C Y C Y 52212211e e +=+=;由非齐次方程解的结构得其通解252211e e x C C y Y y x x ++=+=.(5)(补充)已知)(x f 满足⎰+=x t t f t x xf 0 2d )(1)(,则221() e x f x x =.解:两边对x 求导得)()()(2x f x x f x x f ='+,整理得()1()()f x x f x x'=-, 分离变量后积分得c x x x f ln ln 2)(ln 2+-=,即22e )(x x c x f =,0≠x ; 又当1=x 时,)1e (1d e 1)1(211 0 222-+=+=⎰c t t c t f t ,即c c c -+=2121e 1e 故1=c ,所以22e 1)(x xx f =. (6)(补充)设)(x f 有连续导数,且1)0(=f .若曲线积分⎰-+L y x x f x x yf 2d ])([d )(与路径无关,则 22e 3 )(--=x x f x .解: 记2)(),(x x f Q x yf P -==.因为积分与路径无关,故有xQ y P ∂∂=∂∂,即x x f x f 2)()(-'=,亦即x x f x f 2)()(=-'.它的通解为 ]d e 2[e ]d e 2[e )(d d c x x c x x x f x x x x +=+⎰⎰=⎰⎰--x c x e 22+--=. 由1)0(=f 得3=c ,于是22e 3)(--=x x f x .2π4(),=()1(0)π,(1) πe .y x y y x x y o x x y y αα∆=∆=+∆+==(7)(补充)已知在任意点处的增量其中, 则解:由题设知,2d .d 1y y x x =+ arctan 12π4d d ln arctan ,e .1(0)ππ,(1)πe .x y xy x C y C y xy C y ==+=+===分离变量得,积分得即由得故2.选择题(1)函数221e c x c y +=(21,c c 为任意常数)是微分方程02=-'-''y y y 的(A) 通解. (B)特解.(C)不是解. (D)解,但不是通解,也不是特解.答( D )解:因为221e c x c y +=x c 2e =,经检验是解,但含有任意常数,故不是特解,又因为只含一个独立的任意常数,故也不是通解.(2)微分方程x y y 2sin 222='-'',其特解形式为=*y(A)x C x B A 4sin 4cos ++. (B)x Cx x Bx A 4sin 4cos ++.(C)x C x B Ax 4sin 4cos ++. (D)x Cx x Bx Ax 4sin 4cos ++. 答( C)解:x y y 2sin 222='-''1cos 4x =-,特解为***+=21y y y .因为022=-r r ,2,021==r r ,而0=λ是特征方程的单根,故应设Ax y =*1;而i 4i =+ωλ不是特征方程根,故应设x C x B y 4sin 4cos 2+=*,因此***+=21y y y x C x B Ax 4sin 4cos ++=.(3)微分方程x y x y y x d )45(d )2(+=-是(A)一阶线性齐次方程. (B)一阶线性非齐次方程.(C)齐次方程. (D)可分离变量方程.答( C )解:原方程可化为x yx y yx y x x y -⋅+=-+=245245d d .(4)(补充)具有特解x y -=e 1,x x y -=e 22, x y e 33=的三阶常系数线性齐次微分方程是(A)0=+'-''-'''y y y y . (B)0=-'-''+'''y y y y . (C)0=-'+''-'''y y y y . (D)0=+'-''+'''y y y y .答( B )解: 由方程的特解可知,其特征根为1,1321=-==r r r ,于是特征方程为0)1()1(2=-+r r 即0123=--+r r r ,故方程为0=-'-''+'''y y y y .(5)(补充)方程09=+''y y 通过点)1,(-π且在该点处与直线1πy x +=-相切的积分曲线为(A)x C x C y 3sin 3cos 21+=. (B)x C x y 3sin 3cos 2+=. (C)x y 3cos =. (D)x x y 3sin 313cos -=.答( D) 解:因为092=+r ,i 32,1±=r ,故通解为x C x C y 3sin 3cos 21+=.由初始条件1)(,1)(='-=ππy y 得31,121-==C C ,所以所求积分曲线为 x x y 3s i n 313c o s -=.(6)(补充) 方程x y y x sin 3e )4(+=-的特解应设为 (A)x B A x sin e +.(B)x C x B A x sin cos e ++.(C)x C x B Ax x sin cos e ++. (D))sin cos e (x C x B A x x ++.答(D)解:对应的齐次方程的特征方程为014=-r ,特征根为 i ,i ,1 ,14321-==-==r r r r .令)()(sin 3e )(21x f x f x x f x +=+=.对于x x f e )(1=,因1=λ是 单特征根,故设x Ax y e 1=*;对于x x f sin 3)(2=,因i i μλω=+=是单特征 根,故设)sin cos (2x C x B x y +=*;从而)sin cos e (21x C x B A x y y y x ++=+=***. (7)(06考研)函数212e e e x x x y C C x -=++满足的一个微分方程是 (A)23e x y y y x '''--=. (B) 23e x y y y '''--=. (C) 23e x y y y x '''+-=. (D) 23e x y y y '''+-=.答(D)解:因为121,2r r ==-,即特征方程为220r r +-=,故排除(A )、 (B ).由1λ=是特征方程的单根,知()e x f x A =,故排除(C ). 3.求下列方程的通解(2) ()x y y x y -=ln 2d d ; 解:方程化为y yx y y x ln 22d d =+,是一阶线性方程.⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-C y y y x y y yyd e ln 2e d 2d 12⎥⎦⎤⎢⎣⎡+⋅=⎰C y y y y y d ln 2122 ⎥⎦⎤⎢⎣⎡+⎪⎭⎫⎝⎛-=C y y y y 22241ln 2121221ln -+-=Cy y .(5)0d d d d 22=+-++y x yx x y y y x x ;解:原方程可化为()()0arctan d 21d 21d 22=⎪⎭⎫⎝⎛++y x y x ,故通解为C yx y x =++arctan 212122. (10) y x x y +=+'2.解:设y x u +=2,即y x u +=22,则x xu u x y2d d 2d d -=.代入原方程得 ⎪⎭⎫ ⎝⎛+=121d d u x x u .此为齐次方程,再设xu v =,则x v x v x u d d d d +=,故方程化为v v x v x v 21d d +=+.分离变量为 x x v v v v d 112d 22-=--,两边积分得 ()()()12ln ln 1ln 3112ln 3112ln 21C x v v v v +-=⎥⎦⎤⎢⎣⎡-++---.代回原变量并整理得 ()C xy x y x ++=+23332.4.求下列微分方程满足所给初始条件的特解(1)()0d 2d 223=-+y xy x x y ,11==x y;解:原方程化为()2232d d x xy y x y -=,即2322d d x yx y y x -=-.令1-=x Z ,得322d d yZ y y Z =+.⎪⎪⎭⎫ ⎝⎛+⎰⎰=⎰-C y y Z y yyyd e 2ed 23 d 2()C y y +=ln 212,即 ()C y y x +=ln 2112,故通解为()C y x y +=ln 22.由11==x y,得1=C ,所以特解为 ()1ln 22+=y x y . (3)02sin 2=-''y y ,()20π=y ,()10='y ;解:令y P '=,则y P P y d d ='',原方程化为 y y yP P cos sin 2d d 2=,即y y P P sin d sin 2d 2=.积分得 C y P +=22sin .由()20π=y ,()10='y ,得0=C ,故y P y sin =='.解之得C x y+=2tan ln .由()20π=y ,0=C .故特解为 x y e arctan 2=.5(补充).设x y e =是微分方程x y x p y x =+')(的一个解,求此微分方程满足条件0)2(ln =y 的特解.解:将x y e =代入微分方程得)(e x p x x +x x =e ,解之得x x x p x -=-e )(,于是此微分方程为x y x x y x x =-+'-)e (,即1)1e (=-+'-y y x .其对应的齐次方程的通解为xxC Y +-=ee ,于是此微分方程的通解为xxx C y e ee +=+-.由0)2(ln =y 得21e--=C ,故特解为21e ee -+--=x xx y .6(补充).设)(:x y y L =是一条向上凸的连续曲线,其上任意一点),(y x 处的曲率为211y '+,且此曲线上点)1,0(处的切线方程为1+=x y ,求该曲线的方程.解:因为曲线向上凸,故0<''y ,于是有='+''-32)1(y y 211y '+,化简得二阶方程)1(2y y '+-=''.令y P '=,则P y '='',故方程化为)1(2P P +-='.分离变量后积分得x C P -=1arctan .由题设有1)0()0(='=y P ,于是可定出41π=C ,所以πtan()4y P x '==-,再积分得2πln cos()4y x C =-+.由1)0(=y 得2ln 2112+=C ,因此该曲线:L π1ln cos()1ln 242y x =-++. 7(补充).某湖泊的水量为V ,每年排入湖泊内含污染物A 的污水量为6V ,流入湖泊内不含A 的水量为6V ,流出湖泊的水量为3V .已知1999年底湖中A 的含量为05m ,超过国家规定指标.为了治理污染,从2000年初起,限定排入湖泊中含A 污水的浓度不超过Vm 0.问至少需经过多少年,湖泊中污物A 的含量降至0m 以内?(注:设湖水中A 的浓度是均匀的.)解:设2000年初(记此时0=t )开始,第t 年湖泊中污物A 的总量为m ,浓度为V m ,则在时间间隔]d ,[t t t +内,排入湖泊中污染物A 的量为t mt V V m d 6d 600=⋅,流出湖泊的水中A 的量为t m t V V m d 3d 3=⋅,因而在此间隔内湖泊中污染物A 的改变量为t m mm d )36(d 0-=,005m m t ==.分离变量解得30e 2t C m m --=,由005m m t ==得029m C -=,故)e 91(230t m m -+=.令0m m =,解得 3ln 6=t ,即至少需经过3ln 6年湖泊中污物A 的含量降至0m 以内.8.求下列Euler 方程的通解(2)x y y x y x =+'-''642.解:设tx e =,方程化为 t y t yty e 6d d 5d d 22=+-.………………….(*)0652=+-r r ⇒21=r ,32=r . t t C C y 32 21e e +=. 设t a y e =*,代入方程(*),得 ()t t a a a e 65e =+-.由此定出21=a ,故ty e 21=*.从而原方程的通解为 x x C x C y 213221++=.9.设对于半空间0>x 内任意的光滑有向封闭曲面S , 都有0d d e d d )(d d )(2=--⎰⎰y x z x z x xyf z y x xf xS, 其中()x f 在()+∞,0内具有连续的一阶导数,且()1lim 0=+→x f x ,求()x f .解:由曲面积分与曲面无关的条件0=∂∂+∂∂+∂∂zRy Q x P ,有 ()()()0e 2=--+'x x xf x f x f x ,即()()x x x f x x f 2e 111=⎪⎭⎫ ⎝⎛--'.所以 ()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-C x x x f x x x x x d e e 1e d 112d 11⎥⎦⎤⎢⎣⎡+⋅⋅=⎰-C x x x x x x x d e e 11e 2()C xx x +=e e 1.由()1lim 0=+→x f x ,即()1e e 1lim 0=++→C xx x x ,可求出1-=C ,故 ()()1e e 1-=x x xx f .10(补充).设函数)0)((≥x x y 二阶可导且1)0(,0)(=>'y x y .过曲线)(x y y =上任意一点),(y x P ,作该曲线的切线及Ox 轴的垂线,上述二直线与Ox 轴所围成的三角形的面积记为1S ,区间] ,0[x 上以)(x y y =为曲边的曲边梯形面积记为2S ,并设212S S -恒为1,求此曲线)(x y y =的方程.解:曲线)(x y y =上点),(y x P 处的切线方程为))((x X x y y Y -'=-.切线与Ox 轴的交点为)(0 ,)()(x y x y x '-.由1)0(,0)(=>'y x y ,知0)(>x y ,于是211()()()2()2()y x y x S y x x x y x y x ⎛⎫=--= ⎪''⎝⎭;而⎰=x t t y S 0 2d )( (0≥x );故由条件1221≡-S S 得1d )( 02=-'⎰x t t y y y ,由此还可得1)0(='y .将1d )( 02=-'⎰x t t y y y 两边对x 求导并整理得2)(y y y '=''.令P y =',则y P P y d d ='',于是方程化为P yP y =d d ,解之得y C P y 1==',由1)0(='y 和1)0(=y 得11=C ,于是y y =',从而x C y e 2=.再由1)0(=y 得12=C ,故所求曲线方程为x y e =.11(06考研).设函数()f u 在(0, )+∞内具有二阶导数,且z f =满足等式22220zz x y ∂∂+=∂∂. (1) 验证()()0f u f u u'''+=; (2) 若(1)0,(1)1f f '==,求函数()f u 的表达式. 解: (1)由(),z f u u ==()2222223222()()()y z z x f u f u f u x x x y x y ∂∂''''==⋅+⋅∂∂++,()2222223222()()()y z z x f u f u f u y y x y x y ∂∂''''==⋅+⋅∂∂++. 因为22220z z x y ∂∂+=∂∂,所以有()0f u ''+=,即 ()()0f u f u u'''+=. (2)由(1)得11()f u C u '=+,由(1)1f '=知10C =,即1()f u u'=;于是得2()ln f u u C =+,由(1)0f =,得20C =,所以()ln f u u =.12(07考研).解初值问题2(),(1)1,(1) 1.y x y y y y ''''⎧+=⎨'==⎩解:令2,,(),y P y P P x P P '''''==+=则原方程化为即d 1.d x x P P P-=于是()11d d 111e e d d ().PPPP x C P P P C P P C P ---⎡⎤⎰⎰=+=+=+⎢⎥⎣⎦⎰⎰由11d (1)1,0,d x yP y C P x='=====得且即解得322221,(1)1,33y x C y C =+==又由得故3221.33y x =+12(07考研). 设幂级数0n n n a x ∞=∑在(, )-∞+∞内收敛,其和函数()y x 满足 240,(0)0,(0y x y y y y ''''--=== (I )证明22,1,2,;1n n a a n n +==+(II )求()y x 的表达式.解:(I )对0n n n y a x ∞==∑求一、二阶导数,得1212,(1),n n n n n n y na xy n n a x ∞∞--=='''==-∑∑代入240y xy y '''--=并整理得21(1)(2)240.nnnn n n n n n n n a x n a xa x ∞∞∞+===++--=∑∑∑ 于是 202240,(1)(2)2(2)0,1,2,,n n a a n n a n a n +-=⎧⎨++-+==⎩从而有 22,1,2,.1n n a a n n +==+ (II )因为01(0)0,(0)1,y a y a '====故 20,0,1,2;k a k ==212121*********,0,1,2,.21!!k k k k a a a a a k k k k k k k +---=======-所以22212121000()e ,(, ).!!k k nk x n k n k k k x x y a x a xx x x k k ∞∞∞∞+++=========∈-∞+∞∑∑∑∑213().()()3()6,()1().f x xf x f x x y f x x x D x f x '-=-==补充设满足且由曲线与 直线及轴所围的平面图形绕轴旋转一周得到的旋 转体的体积最小,求33d d 3232.()36,1()e6e d 6d 6.xx xx f x y y x x y f x C x x x C x x Cx x ---⎰⎰'-=-⎡⎤⎡⎤==+-=-⎰⎰⎢⎥⎢⎥⎣⎦⎣⎦=+满足的方程解可写为 其通解:()112322001265402()π()d π(6)d π(1236)d 36 π2.75V C f x x Cx x x C x Cx x xC C ==+⎰⎰=++⎰=++旋转体的体积为()2322π()π207,()0,777.()67.C V C C V C C f x x x '''=+==-=>=-=-令,得惟一驻点且故是极小值点,也是最小值点于是。