当前位置:文档之家› 量子力学真题总结

量子力学真题总结

看起来像一维谐振子,但是它 又没说,只是给了个很 fantastic 的对易关系,一定就 要从前面的条件往后边的条 件上去套关系,聪明人的做法 。 给出了一个条件,就要看到这 个条件背后可以默默无闻地 推导出来的其他结论。
在势阱中的波函数带有系数
A, B ,两边的可直接设为 eikx
解出方程为 0 的时候千万不 能乱消去哦
自旋不能直观显化地理解。 Sz 表象,带波函数算就是了
微扰项给得这么巧,从它的样 数理方法的变量代换是关键。
子我们都可以看出有轮换关 化成独立的谐振子后能量直
系。
接相加,波函数进行相乘。
以组成两个独立的谐振子
6.2 微扰法,先得能量表达式。 两个独立的谐振子,总的波函 这么大一坨,敢不敢写也是一
再把 H 00,00 0 ,
前面求出来了有 (σ L)2 L2 (σ L) ,然后有耦合后角动
量和未耦合之间关系 (σ L) J2 L2 S2 ,其中耦合后的
态 j(l)m j 是 J2 , L2 , S2 的共同本征态,其本征值你懂的!
并度为 N 1想也想得到。 量对外表现出一致的性质。 能够要把它里面的东西都挖
宇称为 (1)N ,基态为偶。
如能级,宇称等等可以让他看 熟,来龙去脉! 上去是一个整体。
4.用拉通了的位力定理可以 位力拉通第一哥,
位力定理,海尔曼定理要熟了
求得 r 1 。
海尔曼加角动量本征为二哥, 又熟,超级熟,这是基本。 对于三弟,我们先有能量本征 对于 Hamiltonian 变换到球坐
H nxny ,00

2
nx ,1 ny ,1 ,
数都是两个直接相乘的形式, 个关键。
那么在微扰中就可以分开来 各自和各自作用。

(0) 11








最神奇的是,发现只有两个态 来的项我可以直接用。
后面就可以带微扰公式了 的系数都等于零的时候,微扰 警惕一维谐振子的微扰,应该
到了对称位势的 势垒问
题。我们有基态为偶宇称, 第一激发态为奇宇称,粒子 本来就不在原点位置出现, 故此时得到任何的和无势阱 无异。
基态能量随着 A 的变化是正
相关,要非负那哥哥先来解出
能量为 0 得到的 A ,非负要 求比此时的 A 大即可。
再利用基态偶宇称和坐标倒
数在原点跳跃条件求得!
移动坐标,把 x 移动成 y 比较
12 年量子 1. 平 面 转 子 由 角 动 量 替 代 动 量,解出来有
m ( )
1 eim , 其 中 2
1 来自于在一个周期内 2
对波函数积分的归一化。因
为波函数的周期为 2 ,指数
函数要满足这样的周期必然
注意是 m ( ) ,是随着 m
下标取值而不同的多个波函 数。 接下来将题给的状态用各个 束缚态来进行叠加。叠加后各
果。
在波函数一级修正有了的情 况下求二级修正的直接法要
再 利 用 k k 1 得 到 了 k
n 的简明形式很厉害。
E (2) n

n
H


(1) n
引起重视!
能量二级修正也是一样,注意 直接等于 0 的量
11 年量子: 要完全穿透,可分区间列出 波函数的解,波函数及其导 数连续条件,完全透射条件
Hamiltonian 时可以发现折合
质量是


m 2
,再考虑到对
表现形式差不多,直接带解。 S 与 在总角动量的平方运
列出 Hamiltonian 的时候,要
算上要注意关系,有
S

2

自 旋 单 态 才 可 能 存 在 束 缚 用折合质量代替方程中质量 氢原子能级和基态要记熟。
态,那么再类比氢原子即可。 束缚态要存在必须去除掉自
构造可以得出新的关系式,特 别是在某个量的本征方程里
海尔曼定理对 l 偏导
好像拼了命也最多能构造到 面最好用这个。
有 n
H r
n
0 ,且由于
这一步了,以后哦至少就要平 了命构造到这。
要牢记这三个次方项的平均
是对 r 偏导,得到了 r 3
值计算过程!
5.把现在的态在 Sz 表象中直

以及 p 在此态下的关系
对易分两条路走殊途同归可


以得到 n x m 与 n p m
之间的关系,也就反映了他们 的内在关系!
第二问的求和利用这个关系带入即可!
4.转子不说了,2012 年第一题
5.先归一化得出系数 A !自旋朝上就是波函数取得上方那个
的概率~!
态失写成那种形式就是在 Sz
总自旋 z 分量 J z Lz Sz , Lz Sz 整体作用后面态!

2 x12

2 x2 2

自旋就是这么神奇,它可以先 这种每个态沿各自的演化因 沿着正向后来随时演化到负。 子演化的,在求能量平均的时 并且在演化过程中伴随有角 候时间因子都要消去,故能量 动量量子化,分量量子化的特 平均值不随时间改变。 性。这是自旋的特殊性质,故 要沿负轴的概率,我们就来到
量,后面还减去一个常量。
个整体减少量,为
q2E2 2 2

原谐振子只是平衡位置偏移
4.波函数相乘能级相加,考虑自旋带入 (Sz ) ,简并度乘 2
5. (σ A)(σ B) A B iσ (A B) ,这个公式要会证,也
就是体会了点乘叉乘的要义。也可以先在一个方向上证明一 些之间具有的代换性质,然后再三个方向轮换得到整体的表 现形式。
重要。
解 势垒以及一维无限势阱
的基本功过后,结合宇称态就 出来了。 先算能量为 0 的情况不易想 到。

3 谐振子的那个关于 x, p 作用到态上的升降关系记清楚, x 定义记清楚就得到这 30 分了!
4.有算符的矩阵表示,只需设出波函数,先解本质值再带入解本征失,over 了!
5.先选力学量完全集,列出 两粒子作用,和氢原子在空间 旋三重态。
个态乘上演化因子得 t 时刻!
带入求平均值公式知道指数 项前后正负的消掉了,能量平 均值不随时间改变。
给出转子,隐含周期性边界条 件,由此边界条件引入量子 化,直接可以严格解出各态。 将题给态来进行可能态的叠 加!
有 m 0,1,2 ~~~ ,能量由
m
2R2E 决定
2.坐标平移到对称区间,就得
谔方程,然后 E 0 ,游离态 的撒!
这个题就是喳喳!
小于则是束缚态,看题中要 解出来的能级是一个常量,我
求只讨论束缚态。再按照 应该记得波函数的形式。
函数势阱的一般方法,奇宇
称在 x 0 的边界条件死去。
3.波函数相乘,能级相加,简 二维各向同性,整体的可观测 一维谐振子是重中之重,一定
简单的态叠加原理的运用! 先列出可能有三个值,


再分清在哪个态下取值概率,
取得 ,0, 的概率分别为 a1, a0 , a1 。Lx 在 Lz 的本征态下 再进入到态里面去分析。


平权又是一个好家伙,在本征
平均值为 0,有第一个关于 a 的方程。 Lx 与 Ly 平权可以得 态下平均值为 0 值得注意,书
能量取值必须满足 n 取整
哈氏量必厄米,题眼! 厄米后公式归纳整理! 把粒子数表象的本征失写出
来 e 2 / 2 n
n0 n!
再带入 n 中得 En
似于升降算符的性质。


3.作对易关系的矩阵元 n [x, H ] m ,一次用 H m 直接作用



得 Em , En ,一个把 H 打开后来与 x 进行对易,就可以得到 x
到第二个关于他们平方的方程。解之得!
上有证明。
4.先将整个波函数用箱归一, 自旋自由度和空间坐标自由 在 (r, r dr) 里 面 的 概 率 是
N
N12

N
2 2
,然后针对
ห้องสมุดไป่ตู้
度是相互独立的。自旋我也可 以不把它叫上下,叫黑白也可
它不积分,对所有的角度积
题目求得在各个微元概率 以,阿猫阿狗也可以!
式得到基态能量值!
10 年量子;
只存在奇宇称态, n 1,2,3
在区域内将波函数 n (x) 解出来,将现有的波函数表示成它 动量平均值计算的时候注意
的叠加。按时间因子演化即可!
弄成只取复共轭的形式!
2.粒子完全透射,同 11 年第一题
3.先归一化,看系统是处在 Y00 还是 Y11 态。要是在 Y11 中的话,
分,立体角微元中,就是对所
有径失积分 (0,)
5.有了 Hamiltonian 的矩阵, 我们直接先求本征值,再带 入求本征失。初始时刻态叠 加,随演化因子演化,能量 期望值不随时间而变。随后
运动中自旋取到负 z 的概率
用复共轭积分法即可 6.1 进 行 变 量 代 换 ,
2 x 2

2 y 2
6.一维束缚态无简并,直接带 给出了 Hamiltonian,特别是
f (k) f (k) f (n)
入微扰公式得能量一级修正 有时候在一维谐振子下,带微 kn
k
为 0!
扰公式是一门技术直接得结 是一个关键哇!
代公式有波函数修正为
n n i( A An ) n
再带入能级二级修正公式
表象中的意思! 注意后面整体作用得本征值!
记得带上 啊!
6.由于是变分法,就大胆地把 通过两个参量来约束波函数, 变 分 法 的 核 心 是 找 到 这 个
相关主题