当前位置:文档之家› 微分中值定理与导数的应用习题

微分中值定理与导数的应用习题

第四章 微分中值定理与导数的应用习题§ 微分中值定理1. 填空题(1)函数x x f arctan )(=在]1 ,0[上使拉格朗日中值定理结论成立的ξ是ππ-4.(2)设)5)(3)(2)(1()(----=x x x x x f ,则0)(='x f 有 3 个实根,分别位于区间)5,3(),3,2(),2,1(中.2. 选择题(1)罗尔定理中的三个条件:)(x f 在],[b a 上连续,在),(b a 内可导,且)()(b f a f =,是)(x f 在),(b a 内至少存在一点ξ,使0)(='ξf 成立的( B ).A . 必要条件B .充分条件C . 充要条件D . 既非充分也非必要条件(2)下列函数在]1 ,1[-上满足罗尔定理条件的是( C ). A.x e x f =)( B.||)(x x f = C. 21)(x x f -= D.⎪⎩⎪⎨⎧=≠=0,00 ,1sin )(x x xx x f (3)若)(x f 在),(b a 内可导,且21x x 、是),(b a 内任意两点,则至少存在一点ξ,使下式成立( B ).A . ),()()()()(2112b a f x x x f x f ∈'-=-ξξB . ξξ)()()()(2121f x x x f x f '-=-在12,x x 之间C . 211221)()()()(x x f x x x f x f <<'-=-ξξD . 211212)()()()(x x f x x x f x f <<'-=-ξξ3.证明恒等式:)(2cot arctan ∞<<-∞=+x x arc x π.证明: 令x arc x x f cot arctan )(+=,则01111)(22=+-+='xx x f ,所以)(x f 为一常数.设c x f =)(,又因为(1)2f π=,故 )(2cot arctan ∞<<-∞=+x x arc x π.4.若函数)(x f 在),(b a 内具有二阶导数,且)()()(321x f x f x f ==,其中12a x x << 3x b <<,证明:在),(31x x 内至少有一点ξ,使得0)(=''ξf .证明:由于)(x f 在],[21x x 上连续,在),(21x x 可导,且)()(21x f x f =,根据罗尔定理知,存在),(211x x ∈ξ, 使0)(1='ξf . 同理存在),(322x x ∈ξ,使0)(2='ξf . 又)(x f '在],[21ξξ上符合罗尔定理的条件,故有),(31x x ∈ξ,使得0)(=''ξf .5. 证明方程062132=+++x x x 有且仅有一个实根.证明:设621)(32x x x x f +++=, 则031)2(,01)0(<-=->=f f ,根据零点存在定理至少存在一个)0,2(-∈ξ, 使得0)(=ξf .另一方面,假设有),(,21+∞-∞∈x x ,且21x x <,使0)()(21==x f x f ,根据罗尔定理,存在),(21x x ∈η使0)(='ηf ,即02112=++ηη,这与02112>++ηη矛盾.故方程062132=+++x x x 只有一个实根.6. 设函数)(x f 的导函数)(x f '在],[b a 上连续,且0)(,0)(,0)(<><b f c f a f ,其中c 是介于b a ,之间的一个实数. 证明: 存在),(b a ∈ξ, 使0)(='ξf 成立. 证明: 由于)(x f 在],[b a 内可导,从而)(x f 在闭区间],[b a 内连续,在开区间(,)a b 内可导.又因为()0,()0f a f c <>,根据零点存在定理,必存在点1(,)a c ξ∈,使得0)(1=ξf . 同理,存在点2(,)c b ξ∈,使得0)(2=ξf .因此()f x 在[]21,ξξ上满足罗尔定理的条件,故存在),(b a ∈ξ, 使0)(='ξf 成立.7. 设函数)(x f 在]1,0[上连续, 在)1,0(内可导. 试证:至少存在一点(0,1)ξ∈, 使()2[(1)(0)].f f f ξξ'=-证明: 只需令2)(x x g =,利用柯西中值定理即可证明.8.证明下列不等式 (1)当π<<x 0时,x xxcos sin >. 证明: 设t t t t f cos sin )(-=,函数)(t f 在区间],0[x 上满足拉格朗日中值定理的条件,且t t t f sin )(=', 故'()(0)()(0), 0f x f f x x ξξ-=-<<, 即0sin cos sin >=-ξξx x x x (π<<x 0)因此, 当π<<x 0时,x xxcos sin >. (2)当 0>>b a 时,bba b a a b a -<<-ln . 证明:设x x f ln )(=,则函数在区间[,]b a 上满足拉格朗日中值定理得条件,有'()()()(),f a f b f a b b a ξξ-=-<<因为'1()f x x =,所以1ln ()a a b bξ=-,又因为b a ξ<<,所以111abξ<<,从而bba b a a b a -<<-ln .§ 洛毕达法则1. 填空题 (1) =→xxx 3cos 5cos lim2π35-(2)=++∞→xx x arctan )11ln(lim0 (3))tan 11(lim 20x x x x -→=31(4)0lim(sin )x x x +→=12.选择题(1)下列各式运用洛必达法则正确的是( B )A . ==∞→∞→n n nn n e n ln limlim 11lim=∞→nn eB . =-+→xx x x x sin sin lim∞=-+→x xx cos 1cos 1lim 0C . xx x x x x x x x cos 1cos1sin 2lim sin 1sinlim020-=→→不存在 D . x x e x 0lim→=11lim 0=→xx e(2) 在以下各式中,极限存在,但不能用洛必达法则计算的是( C )A . x x x sin lim 20→B . x x x tan 0)1(lim +→C . x x x x sin lim +∞→D . x nx ex +∞→lim3. 求下列极限(1)nn mm a x a x a x --→lim .解: n n m m a x a x a x --→lim =nm n m a x a nm nx mx ---→=11lim.(2)20222lim xx x x -+-→. 解: 20222lim xx x x -+-→=x x x x 22ln 22ln 2lim 0-→-=2)2(ln 2)2(ln 2lim 220x x x -→+=2)2(ln .(3)3tan sin limx xx x -→ .解:30tan sin lim x x x x -→=32030)21(lim )1(cos tan lim xx x x x x x x -⋅=-→→=21-. (4) 20)(arcsin 1sin lim x x e x x --→.解:20)(arcsin 1sin lim x x e x x --→=201sin lim xx e x x --→=212sin lim 2cos lim 00=+=-→→x e x x e x x x x .(5)xx x x xx ln 1lim 1+--→.解: )ln 1()(x x x x x +=',x x x x xx ln 1lim1+--→=xx x xx 11)ln 1(1lim 1+-+-→=22111)ln 1(limx x x x x xx x --+-→2])ln 1([lim 1221=++=++→x x x x x x .(6) )111(lim 0--→xx e x . 解:2121lim )1(1lim )111(lim 22000==---=--→→→xxe x x e e x x x xx x x(7) x x xtan 0)1(lim +→ .解:1)1(lim 202000sin limcsc 1lim cot ln limln tan lim tan 0=====+→+→+→+→+----→x x xx xxxx x x x x x x eeeex.(8))31ln()21ln(limxx x +++∞→.解: )31ln()21ln(lim x x x +++∞→=2ln 23ln(12)12lim ln(12)3lim 3lim 1x x x xx x x x x →+∞→+∞→+∞+++===xxx 212lim 2ln 3++∞→=2ln 3.(9) n n n ∞→lim .解: 因为1lim 1limln 1lim===∞→∞→∞→xxxxx x x ee x ,所以nn n ∞→lim=1.§函数的单调性与曲线的凹凸性1. 填空题(1) 函数)ln(422x x y -=的单调增加区间是),21()0,21(+∞- ,单调减少区间)21,0()21,( --∞.(2)若函数)(x f 二阶导数存在,且0)0(,0)(=>''f x f ,则xx f x F )()(=在+∞<<x 0上是单调 增加 .(3)函数12+=ax y 在),0(∞+内单调增加,则a 0>.(4)若点(1,3)为曲线23bx ax y +=的拐点,则=a 23-,=b 29,曲线的凹区间为)1,(-∞,凸区间为),1(∞.2. 单项选择题(1)下列函数中,( A )在指定区间内是单调减少的函数. A . x y -=2 ),(∞+-∞ B . x y e = )0,(-∞C . x y ln = ),0(∞+D . x y sin = ),0(π(2)设)12)(1()(+-='x x x f ,则在区间)1,21(内( B ). A. )(x f y =单调增加,曲线)(x f y =为凹的 B. )(x f y = 单调减少,曲线)(x f y =为凹的 C. )(x f y =单调减少,曲线)(x f y =为凸的 D.)(x f y =单调增加,曲线)(x f y =为凸的(3))(x f 在),(+∞-∞内可导, 且21,x x ∀,当 21x x >时, )()(21x f x f >,则( D )A. 任意0)(,>'x f xB. 任意0)(,≤-'x f xC. )(x f -单调增D. )(x f --单调增(4)设函数)(x f 在]1,0[上二阶导数大于0, 则下列关系式成立的是( B )A. )0()1()0()1(f f f f ->'>'B. )0()0()1()1(f f f f '>->'C. )0()1()0()1(f f f f '>'>-D. )0()1()0()1(f f f f '>->' 2. 求下列函数的单调区间 (1)1--=x e y x .解:1-='x e y ,当0>x 时,0>'y ,所以函数在区间),0[+∞为单调增加; 当0<x 时,0<'y ,所以函数在区间]0,(-∞为单调减少.(2)(2y x =-.解:)1(31031-='-x x y ,当1>x ,或0<x 时,0>'y ,所以函数在区间),1[]0,(+∞-∞ 为单调增加; 当01x <<时,0<'y ,所以函数在区间]1,0[为单调减少.(3))1ln(2x x y ++=解: 011111222>+=++++='xxx x x y ,故函数在),(+∞-∞单调增加.3. 证明下列不等式(1)证明: 对任意实数a 和b , 成立不等式||1||||1||||1||b b a a b a b a +++≤+++.证明:令xxx f +=1)(,则0)1(1)(2>+='x x f , )(x f 在) , 0 [∞+内单调增加. 于是, 由 |||| ||b a b a +≤+, 就有 ) |||| () || (b a f b a f +≤+, 即||1||||1||||||1||||||1||||||1||||||1||b b a a b a b b a a b a b a b a b a +++≤+++++=+++≤+++(2)当1>x 时, 1)1(2ln +->x x x .证明:设)1(2ln )1()(--+=x x x x f , 11ln )('-+=xx x f ,由于当1x >时,211()0f x x x''=->, 因此)(x f '在),1[+∞单调递增, 当 1x >时, 0)1()(='>'f x f , 故)(x f 在),1[+∞单调递增, 当 1>x 时, 有0)1()(=>f x f .故当1>x 时,0)1(2ln )1()(>--+=x x x x f , 因此1)1(2ln +->x x x .(3)当 0>x 时,6sin 3x x x ->.证明:设6sin )(3x x x x f +-=, 021cos )(2=+-='x x x f ,当0>x ,()sin 0f x x x ''=->,所以)(x f '在),0[+∞单调递增, 当 0>x 时, 0)0()(='>'f x f , 故)(x f 在),0[+∞单调递增, 从而当 0>x 时, 有0)0()(=>f x f . 因此当 0>x 时,6sin 3x x x ->.4. 讨论方程k x x =-sin 2π(其中k 为常数)在)2,0(π内有几个实根.解:设()sin ,2x x x k πϕ=-- 则()x ϕ在]2,0[π连续, 且k k -=-=)2(,)0(πϕϕ,由()1cos 02x x πϕ'=-=,得2arccos x π=为)2,0(π内的唯一驻点.()x ϕ在2[0,arccos ]π上单调减少,在2[arccos ,]2ππ上单调增加.故k ---=242arccos )2(arccos 2πππϕ为极小值,因此)(x ϕ在]2,0[π的最大值是k -,最小值是k ---242arccos 2ππ.(1) 当,0≥k 或242arccos 2--<ππk 时,方程在)2,0(π内无实根;(2) 当0242arccos 2<<--k ππ时,有两个实根;(3) 当242arccos 2--=ππk 时,有唯一实根.5. 试确定曲线d cx bx ax y +++=23中的a 、b 、c 、d ,使得2-=x 处曲线有水平切线,)10,1(-为拐点,且点)44,2(-在曲线上.解: c bx ax y ++='232,b ax y 26+='',所以2323(2)2(2)062010(2)(2)(2)44a b c a b a b c d a b c d ⎧-+-+=⎪+=⎪⎨+++=-⎪⎪-+-+-+=⎩ 解得: 16,24,3,1=-=-==d c b a .6.求下列函数图形的拐点及凹或凸的区间 (1)12-+=x xx y 解: 222)1(11-+-='x x y , 323)1(62-+=''x xx y , 令0=''y ,得0=x ,当1x =±时y ''不存在.当01<<-x 或1>x 时, 0>''y ,当1-<x 或10<<x 时, 0<''y . 故曲线12-+=x xx y 在)1,0()1,( --∞上是凸的, 在区间和),1()0,1(+∞- 上是凹的,曲线的拐点为)0,0(.(2)32)52(x x y -=拐点及凹或凸的区间解:y '=,y ''=.当0=x 时,y y ''',不存在;当21-=x 时,0=''y .故曲线在)21,(--∞上是凸的, 在),21(+∞-上是凹的,)23,21(3--是曲线的拐点,7.利用凹凸性证明: 当π<<x 0时, πxx >2sin证明:令πxx x f -=2sin )(, 则π12cos 21)(-='x x f , 2sin 41)(x x f -=''.当π<<x 0时, 0)(<''x f , 故函数πx x x f -=2sin )(的图形在),0(π上是凸的,从而曲线)(x f y =在线段AB (其中)(,()),0(,0(ππf B f A )的上方,又0)()0(==πf f , 因此0)(>x f ,即πxx >2sin .§ 函数的极值与最大值最小值1. 填空题(1)函数x x y 2=取极小值的点是1ln 2x =-. (2) 函数31232)1()(--=x x x f 在区间]2,0[上的最大值为322)21(=f ,最小值为(0)1f =- .2.选择题(1) 设)(x f 在),(+∞-∞内有二阶导数,0)(0='x f ,问)(x f 还要满足以下哪个条件,则)(0x f 必是)(x f 的最大值( C )A . 0x x =是)(x f 的唯一驻点B . 0x x =是)(x f 的极大值点C . )(x f ''在),(+∞-∞内恒为负D . )(x f ''不为零(2) 已知)(x f 对任意)(x f y =满足x e x f x x f x --='+''1)]([3)(2,若00()0 (0)f x x '=≠,则( B )A. )(0x f 为)(x f 的极大值B. )(0x f 为)(x f 的极小值C.))(,00x f x (为拐点 D. )(0x f 不是极值点, ))(,00x f x (不是拐点(3)若)(x f 在0x 至少二阶可导, 且1)()()(lim2000-=--→x x x f x f xx ,则函数)(x f 在0x 处( A )A . 取得极大值B . 取得极小值C . 无极值D . 不一定有极值3. 求下列函数的极值 (1) ()3/223x x x f -=.解:由13()10f x x -'=-=,得1=x .4''31(),(1)03f x x f -''=>,所以函数在1=x 点取得极小值.(2)xx x f 1)(=.解:定义域为),0(+∞,11ln 21, (1ln )x xxy ey xx x '==-, 令0y '=得驻点x e =,当(0,)x e ∈时,0y '>,当(,)x e ∈+∞时,0y '<. 因此ee e y 1)(=为极大值.4. 求14123223+-+=x x x y 的在]4,3[-上的最大值与最小值. 解:(3)23, (4)132y y -==.由266120y x x '=+-=,得1=x , 2-=x .而34)2(,7)1(=-=y y , 所以最大值为132,最小值为7.5. 在半径为R 的球内作一个内接圆锥体,问此圆锥体的高、底半径为何值时,其体积V 最大.解:设圆锥体的高为h , 底半径为r ,故圆锥体的体积为h r V 2 31π=, 由于222)(R r R h =+-,因此)2( 31)(2h Rh h h V -=π )20(R h <<, 由0)34( 31)(2=-='h Rh h V π,得34Rh =,此时R r 322=. 由于内接锥体体积的最大值一定存在,且在)2,0(R 的内部取得. 现在0)(='h V 在)2,0(R 内只有一个根,故当34Rh =, R r 322=时, 内接锥体体积的最大.6. 工厂C 与铁路线的垂直距离AC 为20km , A 点到火车站B 的距离为100km . 欲修一条从工厂到铁路的公路CD , 已知铁路与公路每公里运费之比为3:5,为了使火车站B 与工厂C 间的运费最省, 问D 点应选在何处解: 设AD x= B 与C 间的运费为y , 则)100(340052x k x k y -++= (1000≤≤x ),其中k 是某一正数. 由 0)34005(2=-+='xx k y 得15=x由于ky x 400|0== k y x 380|15==2100511500|+==x y 其中以k y x 380|15==为最小因此当AD15=x km 时总运费为最省.7. 宽为b 的运河垂直地流向宽为a 的运河. 设河岸是直的,问木料从一条运河流到另一条运河去,其长度最长为多少解: 问题转化为求过点C 的线段AB 的最大值. 设木料的长度为l , y CB x AC ==,,木料与河岸的夹角为t ,则l y x =+,且tby t a x sin ,cos ==, t b t a l sin cos +=)2,0(π∈t . 则ttb t t a l 22sin cos cos sin -=', 由0='l 得3tan abt =, 此时233232)(b a l +=,故木料最长为233232)(b a l +=.§ 函数图形的描绘1.求23)1(+=x x y 的渐近线. 解:由 -∞=+-→231)1(limx x x ,所以1x =为曲线)(x f y =的铅直渐近线. 因为 2)1(lim )(lim ,1)1(lim lim 2322-=-+=-=+=∞→∞→∞→∞→x x x x y x x x y x x x x 所以2-=x y 为曲线)(x f y =的斜渐近线.第四章 综合练习题1.填空题(1) 01ln(1)1lim sin limarctan x x x x x x→→+∞++= 0 . (2) 函数)1ln(+-=x x y 在区间)0,1(-内单调减少,在区间),0(+∞内单调增加.(3) 曲线)1ln(1x e xy ++=的渐近线是00==y x 和.(4)=-→x x x cos 02)(tan lim π1 . 2. 求下列极限 (1) 2)1ln(sin 1tan 1limx x x xx x -++-+→解:20)1ln(sin 1tan 1lim x x x xx x -++-+→=xx x x x x x x sin 1tan 11])1[ln(sin tan lim 0+++⋅-+-→ =x x x x x x x tan lim )1ln(cos 1lim2100→→⋅-+-=x x xx -+-→)1ln(cos 1lim 210=111sin lim 210-+→xx x=21)1(sin lim210-=+-→x x x x . (2) xe e x x x x a a x x 1sin)(1cos )1cos 11sin(lim21-+-+∞→ 解:x e e x x x x a a x x 1sin )(1cos )1cos 11sin(lim21-+-+∞→=xe e x x x x x a x 1sin)1(1cos)1cos 11sin (lim 212-+-∞→=x x e x x x a x 1)1(1cos 11sin lim 22+-∞→=a x a e xx x x x x x e 2432223131sin 11cos 11cos 1lim1-=-+-∞→. 3. 求证当0>x 时, )1ln(212x x x +<-. 证明: 令221)1ln()(x x x x f +-+=, 则21()111x f x x x x'=-+=++, 当0>x 时, ()0f x '>,故)(x f 在),0[+∞单调增. 当0>x 时,有()(0)0f x f >=,即 )1ln(212x x x +<-.4. 设)(x f 在],[b a 上可导且4≥-a b ,证明:存在点),(0b a x ∈使)(1)(020x f x f +<'.证明: 设)(arctan )(x f x F =, 则)(1)()(2x f x f x F +'=',且2|)(|π≤x F . 由拉格朗日中值定理知, 存在),(0b a x ∈,使)()()(0x F ab a F b F '=--, 即14422|)(||)(|)()()(1)(020<=+≤-+≤--=+'πππa b a F b F a b a F b F x f x f .5. 设函数)(),(x g x f 在],[b a 上连续,在),(b a 内具有二阶导数且存在相等的最大值, 且)()(a g a f =, )()(b g b f =, 证明: 存在),(b a ∈ξ,使得)()(ξξg f ''=''.证明: 设)(),(x g x f 分别在),(,21b a x x ∈取得最大值M , 则12()()f x g x M ==, 且12()()0f x g x ''==. 令)()()(x g x f x F -=.当21x x =时, 0)()()(1===x F b F a F , 由罗尔定理知, 存在),(),,(1211b x x a ∈∈ξξ, 使0)()(21='='ξξF F , 进一步由罗尔定理知, 存在),(21x x ∈ξ,使0)(=''ξF ,即)()(ξξg f ''=''当21x x ≠时, 0)()(11≥-=x g M x F ,0)()(22≤-=M x f x F ,由零点存在定理可知,存在],[211x x ∈ξ,使0)(1=ξF . 由于0)()(==b F a F ,由前面证明知, 存在),(b a ∈ξ,使0)(=''ξF ,即)()(ξξg f ''=''.6. 设0≤k ,证明方程112=+xkx 有且仅有一个正的实根. 证明:设11)(2-+=x kx x f . 当0=k ,显然112=x只有一个正的实根.下考虑0<k 时的情况.先证存在性: 因为)(x f 在),0(+∞内连续,且+∞=→)(lim 0x f x ,-∞=+∞→)(lim x f x ,由零点存在定理知,至少存在一个),0(+∞∈ξ,使0)(=ξf ,即112=+x kx 至少有一个正的实根.再证唯一性:假设有12,0x x >,且21x x <,使0)()(21==x f x f ,根据罗尔定理,存在12(,)(0,)x x η∈⊂+∞,使0)(='ηf ,即023=-ηk ,从而023>=ηk ,这与0<k 矛盾.故方程112=+x kx 只有一个正的实根.7. 对某工厂的上午班工人的工作效率的研究表明,一个中等水平的工人早上8时开始工作,在t 小时之后,生产出t t t t Q 129)(23++-=个产品.问:在早上几点钟这个工人工作效率最高解:因为12183)()(2++-='=t t t Q t x ,186)()(+-=''='t t Q t x , 令0)(='t x ,得3=t .又当3t <时,()0x t '>.函数()x t 在[0,3]上单调增加;当3t >时,()0x t '<,函数()+∞上单调减少.故当3x t在[3,)t时,)(t x达到最大, 即上午11时这=个工人的工作效率最高.。

相关主题