当前位置:文档之家› 热力学第二定律微观解释

热力学第二定律微观解释


二、热力学第二定律
1.开尔文表述 1851年开尔文总结出热力学过程进行的限度。 – 不可能从单一热源吸取热量,使之完全变成 有用的功而不产生其他影响。 功可以完全变热,但要把热完全变为功而不产生其它 影响是不可能的。 以热机为例,热机的循环除了热变功外,还必定有一 定的热量从高温热源传给低温热源,即产生了其它效果。
热力学第二定律的 微观解释
一个“妖精”,神通广大,能跟踪充 满容器的每个气体分子的运动。把这 个容器用一道隔板分为A ,B两部分, 并在隔板上安装一个阀门,当阀门打 开时单个气体分子可以从容器的一部 分经过阀门进入另一部分去。
假设这个容器开始时完全充满了一定温度的气体,按照热的 动力论,一定的温度对应于分子的一定的平均温度,因为气体 分子的运动具有随机性质,有的分子的速度将大于平均值,有 的则将小于平均值。妖精在适当的时候打开阀门,让快的分子 从B 进入A,慢的分子从A进入B ,结果不须消耗能量,B 部分 的温度就下降,A部分的温度就上升,热量可以自发地从低温物 体流向高温物体。
熵增加原理
在任何自然过程中,一个孤立系统的总熵不会减小 从微观的角度看,热力学第二定律是一个统计规律:一个孤立 系统总是从熵小的状态向熵大的状态发展,而熵值较大代表着较 为无序,所以自发的宏观过程总是向无序程度更大的方向发展。
平衡态:相应于一定宏观条 件下 最大的状态。最平 均、最无序、最混乱。 热力学第二定律的统计表述:孤 立系统内部所发生的过程总是从 包含微观态数少的宏观态向包含 微观态数多的宏观态过渡,从热 力学几率小的状态向热力学几率 大的状态过渡。
1.电冰箱能够不断地把热量从温度较低的冰箱内部传给温度 较高的外界空气,这说明了 BD A.热量能自发地从低温物体传给高温物体 B.在一定条件下,热量可以从低温物体传给高温物体 C.热量的传导过程不具有方向性 D.在自发地条件下热量的传导过程具有方向性
2.一个物体在粗糙的平面上滑动,最后停止。 系统的熵如何变化? 解析:因为物体由于受到摩擦力而停止运动, 其动能变为系统的内能,增加了系统分子无规 则运动的程度,使得无规则运动加强,也就是 系统的无序程度增加了,所以系统的熵增加。
可逆过程是理想化的过程。 强调:不可逆过程不是不能逆向进行,而是说当过程 逆向进行时,逆过程在外界留下的痕迹不能将原来正 过程的痕迹完全消除。 开氏表述实质上在于说明功变热的过程是不可逆的。 克氏表述实质上在于说明热传导过程是不可逆的。
热力学第二定律说明了自然界的实际过程是按一
定的方向进行的,是不可逆的,相反方向的过程不 能自动发生,或者说,如果可以发生,则必然引起 其它后果。 热力学第二定律的实质在于指出:一切与热现象有关 的实际宏观过程都是不可逆的。它所揭示的客观规律 向人们指出了实际宏观过程进行的条件和方向。
可逆传热的条件是:系统和外界温差无限小,即等温 热传导。 •气体的迅速膨胀过程是不可逆的。
但是当气体膨胀非常缓慢又没有其它摩擦时,它 却是可逆的。
结论: 1)一切自发过程都是不可逆过程。 2)准静态过程(无限缓慢) +无摩擦的过程是可逆过 程。 3)一切实际过程都是不可逆过程。 可逆过程是一种理想的极限,只能接近,绝不能 真正达到。因为,实际过程都是以有限的速度进行, 且在其中包含摩擦,粘滞,电阻等耗散因素,必然是 不可逆的。
3.热力学第二定律的统计意义
1.有序和无序 有序:只要确定了某种规则,符合这个规则的就叫做有序。 无序:不符合某种确定规则的称为无序。 无序意味着各处都一样,平均、没有差别,有序则相反。 有序和无序是相对的。 2.宏观态和微观态 宏观态:符合某种规定、规则的状态,叫做热力学系统的宏观态。 微观态:在宏观状态下,符合另外的规定、规则的状态叫做这个 宏观态的微观态。 系统的宏观态所对应的微观态的多少表现为宏观态无序程度的 大小。如果一个“宏观态”对应的“微观态”比较多,就说这 个“宏观态”是比较无序的,同时也决定了宏观过程的方向 性——从有序到无序。
自然过程总是向着使 系统热力学几率增大 的方向进行。 一切自然过程总是沿 着无序性增大的方向 进行。 可逆过程:熵不变, 实际不存在,如等温 过程,实际不存在 不可逆过程:熵增加
4.热力学第二定律的适用范围
1)适用于宏观过程对微观过程不适用,
2)孤立系统有限范围。
对整个宇宙不适用。
耗散结构 (1)宇宙真的正在走向死亡吗? 实际宇宙万物,宇宙发展充满了无序 到有序的发展变化 . (2) 生命过程的自组织现象 生物体的生长和物种进化是从无序到 有序的发展.

A
为了进一步研究热力学第二定律的含义和热力学过 程方向性问题,引入可逆过程的概念。 2.可逆过程与不可逆过程 一个系统,由一个状态出发经过某一过程达到另 一状态,如果存在另一个过程,它能使系统和外界完 全复原(即系统回到原来状态,同时消除了原过程对 外界引起的一切影响)则原来的过程称为可逆过程; 反之,如果物体不能回复到原来状态或当物体回 复到原来状态却无法消除原过程对外界的影响,则原 来的过程称为不可逆过程。 •单摆运动:一个单摆,如果不受空气阻力及其它摩擦 力,当它离开某一位置后,经过一个周期又回到原来 的位置而周围一切都无变化。 无摩擦和阻力的单摆运动是一个可逆过程。
物理学家们认为,熵定律是物质世界的最终定律,人类 参与的每一项物质活动都受到热力学第一、第二定律的 严密制约;但是,他们又认为熵定律只涉及物质世界, 只控制时空的横向世界,人类的精神世界并不受熵定律 的专制统治!
• 所以,生命的现象是宇宙洪流中的一股逆流! 人类精神的无限发展,是不可抗拒的熵增大长河中的一 条逆流之舟!
3.下面关于熵的说法错误的是 B A.熵是物体内分子运动无序程度的量度 B.在孤立系统中,一个自发的过程总是向熵减少的方向进行 C.热力学第二定律的微观实质是熵是增加的,因此热力学第 二定律又叫熵增加原理 D.熵值越大,代表系统分子运动越无序
[精与解] 热力学第二定律提示:一切自然过程总是沿着分子 热运动无序性增大的方向进行的。例如,功转变为热是机械能 或电能转变为内能的过程是大量分子的有序运动向无序运动转 化,气缸内燃气推动活塞做功燃气分子作有序运动,排出气缸 后作越来越无序的运动。 物理学中用熵来描述系统大量分子运动的无序性程度。热力 学第二定律用熵可表述为:在任何自然过程中,一个孤立系统 的总熵不会减小,也就是说,一个孤立系统的熵总是从熵小的 状态向熵大的状态发展。反映了一个孤立系统的自然过程会沿 着分子热运动的无序性增大的方向进行。
3、两种表述是统一的 1.从开尔文表述入手 假定单热机是可以 造成的,则 Q 高温源 低温源 高温热源 QT1 1
A
单热机
高温热源 Q2 A(T1) Q1 致冷机 Q2 Q2 低温热源 T2 高温热源 QT Q2 1 1
单热机
低温热源 T2 2.从克劳修斯表述入手 高温热源 T1 Q1 假定热量能 A 自动地从低温源 热机 Q2 传到高温源,则 Q2 单热机也能造成。 低温热源 T2 热力学过程是有方向性的。
4.关于有序和无序下列说法正确的是( ABD ) A.有序和无序不是绝对的 B.一个“宏观态”可能对应着许多的“微观态” C.一个“宏观态”对应着唯一的“微观态” D.无序意味着各处一样、平均、没有差别
5.根据热力学第二定律判断机械能 B.扩散的过程完全可逆的 C.火力发电时,燃烧物质的内能不可以全部转化为 电能 D.热量不可能自发的从低温物体传递到高温物体
•不可逆过程的统计性质(以气体自由膨胀为例)
一个被隔板分为A、B相等两部分的容器,装有4个涂以不 同颜色分子,下图是分布情况。 分布 详细分布 (宏观态) (微观态)
A B
1
4
6
4
1
•第二定律的统计表述(依然看前例)
4个分子在容器中的分布对应5种宏观态。
分布的可能状态数 各种分布的状态总数
n
24
(3) 无生命世界的自组织现象
云、雪花、太阳系、化学实验、热对 流、激光等. (4)开放系统的熵变
(和外界有能量交换和物质交换的系 统叫开放系统)
开放系统熵的变化 dS dS e dS i
25
• 有效能量告罄时,是“热寂”──死寂的热平衡状态。 有效物质耗尽时,是一片“物质混乱”──整个宇宙的 大混乱和大混沌。
麦克斯韦的妖精能破坏热力学第二定律吗?
• 一般的解释是:妖精必须得到一些“知 识”,才能把“快”分子和“慢”分子 区分开来。为了获得这些信息,要不要 消耗能量?如果需要,则容器、气体、 隔板、妖精作为封闭系统,为得到所要 信息所需的能量,将不大于因利用这一 信息而消耗的能量,并没有违反热力学 第二定律。
热全部变为功的过程也是有的,如,理想气体等温膨 胀。但这时引起了其它的变化。 开尔文表述否定了热机效率能达百分这百的可能性
Q吸 |Q放 | 1 Q吸
第二类永动机(单热机)不 能制成。
高温热源T1
Q吸
热机
第二类 永动机
A
2、克劳修斯表述 – 热量不能自动地从低温热源传到高温热源而 不引起其它的变化。
自发过程总是从有序到无序演化
• 但是麦克斯韦的妖精可以使其向有序化发 展,酶,就是生命中的麦克斯韦的妖精; 而人类全体作为麦克斯韦的妖精,增加着 社会的有序度。毕竟,“妖精”,用通俗 的话说,是个生物,也是个信息系统, “妖精”就是对宇宙演化的一种抗争。
热力学第二定律的 微观解释
热力学第一定律给出了各种形式的能量在相互转化 过程中必须遵循的规律,但并未限定过程进行的方向。 凡符合热一律的过程---即符合能量守恒的过程是 否都能实现呢? 实验表明,自然界中一切与热现象有关的宏观过程都 是有方向性的。
一、自然过程的方向性
例如:气体的绝热自由膨胀过程。 热传导过程
A B

A
B
这些典型例子说明自然界的实际过程是按一定的 方向进行的,相反方向的过程不能自动发生,或者说, 如果可以发生,则必然引起其它后果。
相关主题