当前位置:文档之家› C有限差分法1

C有限差分法1

第四章 时域有限差分法
在电磁散射计算方法中,有限差分法自上世纪五十 年代以来得到了广泛的应用,该方法概念清晰,方法简 单,直观。虽然其与变分法相结合所形成的有限元法更 有效,但有限差分还是以其固有特点在数值计算中有其 重要地位。
为求解由偏微分方程定解问题所构造的数 学模型,有限差分法是将定解区域(场区)离 散化为网格离散节点的集合。并以各离散点上 函数的差商来近似该点的偏导数,使待求的 偏微分方程定解问题转化为一组相应的差分方 程。根据差分方程组解出各离散点处的待求函 数值—离散解。
频域麦克斯韦方程只适用于正弦稳态时变电磁场
(2)广泛的适用性。 时域有限差分法的直接出发点是概括电 磁场普遍规律的 Maxwell 方程,这就预示着 这一方法具有最广泛的适用性。在网格空间 中媒质的非均匀性、各向异性、色散特性和 非线性等均能很容易地进行精确模拟。任何 问题只要能正确地对源和结构进行模拟,时 域有限差分法就能够给出正确的解答,不管 是散射、辐射、传输、透人或吸收中的哪一 种,也不论是瞬态问题还是稳态问题。
中心差商
(4-5)
df f ( x) f ( x h) f ( x h) (4-6) dx x 2h
在上面三种差商形式中,中心差商的精度最高。
函数 f ( x) 的二阶导数 f ( x) 为
''
d f 1 df df ( ) 2 dx x dx x x dx x 1 f ( x h) f ( x ) f ( x ) f ( x h) h h h f ( x h) 2 f ( x ) f ( x h) 2 h
时域有限差分法的特点
(1)直接时域计算。 时域有限差分法直接把含时间变量的 Maxwell 旋度方程在 Yee 氏网格空间中转换 为差分方程,使电磁波的时域特性被直接反 映出来。这一特点使它能直接给出非常丰富 的电磁场问题的时域信息。如果需要频域信 息,则只需对时域信息ห้องสมุดไป่ตู้行 Fourier 变换。为 获得宽频带的信息,只需在宽频谱的脉冲激 励下进行一次计算。
'
'
故 f ( x) 可表示为差分 f ( x) 除以有限小 差分 x 的商,称为差商。
一阶导数 f ( x) 还可表示为: 向前差商
'
df f ( x) f ( x ) f ( x h) dx x h
向后差商
(4-4)
df f ( x) f ( x h) f ( x ) dx x h
(4-7)
2
u 对偏导数,可仿照上述方法,将 表示为: x u u ( x h, y, z ) u ( x, y, z ) (4-8) x h
同样,二阶偏导数可表示为:
u u ( x h, y, z ) 2u ( x, y, z ) u ( x h, y, z ) 2 2 x h
(3)节约存储空间和计算时间 时域有限差分法所需要的存储空间 直接由所需的网格空间决定,与网格总 数 N 成正比,所需的计算时间也是与网 格总数 N 成正比。相比之下,若离散单 元也是 N,则矩量法所需的存储空间与 2 (3N) 成正比,而所需的 CPU 时间则与 2 3 (3N) 至(3N) 成正比。
§4.1 差分与差商
设函数 f ( x) 的自变量 x 有一小增量 x h ,则
f ( x) 的增量为 f ( x) f ( x h) f ( x) (4-1)
f ( x) 为函数 f ( x) 的一阶差分。当增量 h 足够小,差分
f 与微分 df 之间的差才足够小。
一阶差分 f 是自变量 x 的函数。按式(4-1)计算 f ( x) 的差分 f ( x) 称二阶差分,且
2
2 f ( x) f ( x h) f ( x) (4-2)
函数 f ( x) 的一阶导数 f ( x) 为:
'
df f ( x) f ( x) lim dx x 0 x
'
应用差分,
f ( x) 可表示为 f ( x) f ( x h) f ( x) ' f ( x) (4-3) x h
2
(4-9)
§4.2 Yee 氏网格和 Maxwell 旋度方程的有限差分法
在三维电磁空间, 为了建立差分方程, 首先要将求解空间离散化,通常是以一定 形式的网格来划分求解空间,取空间网格 节点上的未知量作为计算对象,用差分代 替微商,用离散变量的差分方程近似替代 连续变量的微分方程进行求解。
为最大可能地达到隐身效果,F—117A隐形战机采用多面体外形设计。由于雷达探测范围一般在飞机水平 面上下30度的角度内,因此F—117A的大多数表面与垂直面的夹角均大于30度,这样可以把雷达波上下偏转出 去,以避开辐射源。另一方面,F—117A的前后缘被设计得尖锐笔直,机体表面其它边缘设计成与主波束方向 一致,对方雷达接收不到连续的信号,难以确定该飞机是一个实在目标还是一种瞬变噪声。 F—117A隐形战斗轰炸机的全动V型尾翼和机翼均采用菱形翼剖面设计,2台发动机装入机体内部,进气口 采用特殊的复合材料格栅设计,可保证进气口对10长或更长的雷达波的隐身效果。这种格栅进气口同时还具 有向发动机提供均匀气流的优点,从而使F—117A更适应大仰角和侧滑飞行。 F—117A的发动机尾喷口设计采用展向“开缝”式喷口设计,喷口下缘底面阻止红外探测器及雷达从后面 探测到涡轮部件。发动机排出的气流能够与从发动机旁经过的冷空气迅速混合,使排气速下降到66摄氏度, 这样即可以有效地降低发动机的红外辐射特征。这种埋入式发动机设计及特殊的进,排气设计可有效降低发 动机噪声。 F—117A机体材料以铝合金结构为主,整体外表涂满黑色的磁性铁氧体雷达吸波材料,可以有效地吸收高 频率雷达波或低频率雷达波,增强隐形效果。
时域和频域的麦克斯韦方程
时域 频域
H E t H J E t E B 0
E j H H J j E E B 0
相关主题