当前位置:文档之家› 第12章 二羰基化合物

第12章 二羰基化合物


-OC H 2 5
HCOCH2COOC2H5 + CH3COCH2COOC2H5 + C2H5OH -OC H 2 5 COOC2H5 CH3COOC2H5 COOC H
2 5
COOC2H5 CH3COCH2COOC2H5 + C2H5OH COCH2COOC2H5
COOC2H5 COOC2H5
+ CH3CH2COOC2H5
CH3COCH2COOC2H5 5%NaOH CH3COCH2COO
-
H+
CH3COCH3
CO2
H CH2
CH3
O C
H CH2
O C
O
H CH2
O
CH3
C
O C
O
CH3
O C
O C
O
CH3COCH3
化学工业出版社
(乙)酸式分解
O CH3C CH2COOC2H5
40%NaOH
Δ
O 2CH3CONa + C2H5OH
CH3
O O C CH2 COEt + OC2H5
第四步 β–酮酸酯脱质子:
O O O O CH3 C CH COEt + OC2H5 H CH3 C CH COEt + C2H5OH
第五步 碳负离子的质子化(酸化):
O CH3C H O H CH COEt + H O O CH3C H O CH COEt + H2O
O O C CH2 C OC2H5 OH
酸式分解的机理:
CH3 O O C CH2 C OC2H5 OH CH3
-OH
O O CH3C + CH2C OC2H5 OH
O O CH3C O- + CH3C OC2H5
O 2 CH3C O + C2H5OH
化学工业出版社
乙酰乙酸乙酯与伯卤代烷的亲核取代反应:
(2) 乙酰乙酸乙酯实验室制法: 利用克莱森(Claisen)酯缩合反应制备
2 CH3COOC2H5
C2H5ONa
H+
- + [CH3COCHCOOC2H5] Na
CH3COCH2COOC2H5 (75%)
化学工业出版社
Claisen 酯缩合反应机理:
第一步 碱进攻α–H,产生烯醇负离子:
O CH2 COEt H O CH2 COEt O CH2 COEt
COCH3 Br(CH2)4Br + [CH3COCHCOOC2H5] Na Br(CH2)4CH COOC2H5
①稀OH -,②H+,③Δ 酮式分解
C2H5ONa
COCH3 COOC2H5
O C CH3
化学工业出版社
制备各种二酮:
CH3COCH2COOC2H5
+
NaH
[CH3COCHCOOC2H5]- Na+ + H2
反应特点: • 底物:含有两个α–氢的酯 • β–酮酸酯的去质子与酸化 • C―C键的生成 • 生成含两个官能团的产物分子
化学工业出版社
一般只含有一个α—氢的酯因α—H的酸性更加 弱而较难进行酯缩合反应。 需要比C2H5ONa更强的碱(如氢化钠,氨基钠或 三苯甲基钠等)作用下才能进行。
O
2 (CH3)2CHCOC2H5
+ H3 O
(C6H5)3CNa
O CH3 O (CH3)2CH C C C OC2H5 CH3
化学工业出版社
交叉Claisen酯缩合:
COOCH3
NaH
+
CH3CH2COOC2H5
O C
CH3 C COOC2H5 _
+ H
O C
CH3 CH COOC2H5
化学工业出版社
HCOOC2H5
CH3COOC2H5
化学工业出版社
往亚甲基上引酰基时,得到酰基化产物。为了避免 酰卤或酸酐被醇解,这个反应一般是用非质子极性 溶剂如DMF、DMSO而不用醇,强碱用NaH而不是 用醇钠。
O O CH3CCH2COC2H5
NaH DMF
O
O
+
CH3CCHCOC2H5 Na
O
RCCl
O
O
CH3CCHCOC2H5 R C O
0.04 13.50
化学工业出版社
某些化合物中烯醇式含量
酮式 烯醇式 烯醇式含量/%
CH3COC2H5 O CH3CH O CH3CCH3 O C2H5OCCH2COC2H5 O O CH3CCH2COC2H5 O O CH3CCH2CCH3 O O C6H5CCH2CCH3 O O
CH2 COC2H5 OH CH2 CH OH CH2 CCH3 OH C2H5OCCH COC2H5 O OH CH3C CHCOC2H5 OH O CH3C CHCCH3 OH O C6H5C CHCCH3 OH O
+
Br(CH2)nCOOC2H5
- + CH3COCHCOOC2H5 ①稀OH ,②H ,③Δ CH COCH (CH ) COOH 3 2 2 n (CH2)nCOOC2H5 酮式分解
注意,在制备酮酸时不可引入卤代酸,因为卤代酸中的 羧基是酸性基团,因其会分解乙酰乙酸乙酯的钠盐,使 反应难以进行。
CH2
COOC2H5 CH2 CH C O CH2 CH2
+
C2H5OH
化学工业出版社
COOC2H5 O
H2O
COOH O
H
+
O
COOC2H5 O
+
COOC2H5 O
CO2
H2O
H
+
O
+ CO
2
狄克曼缩合反应是合成五、六元碳环 的重要方法 化学工业出版社
12.3.2 乙酰乙酸乙酯的性质 (甲)酮式分解
CH3COCH2COOC2H5
RX
C2H5ONa
[CH3COCHCOOC2H5] - Na+
[CH3COCCOOC2H5] - Na+ R
CH3COCHCOOC2H5 R
R' CH3COCCOOC2H5 R
(CH3)3COK
R'X
上述反应为SN2反应,所以用伯卤代烷、苄基卤、烯丙基卤时 产率较高,仲卤代烷产率较低,叔卤代烷主要发生消除反应得 到烯烃。乙烯型和苯基型卤代烃由于卤素不活泼,也不发生上 述反应。
CH3 C CHCOOC2H5 OH
互变异构
共振杂化体与互变异构本质区别!
化学工业出版社
12.3 乙酰乙酸乙酯
12.3.1 合成
CH2 C CH2 O C O
(1)乙酰乙酸乙酯的工业制法
H2SO4
O
+ C2H5OH
[
O
重 排
CH2 CCH2COC2H5
OH
]
CH3 CCH2COC2H5
O
]
化学工业出版社
烯醇式含量
(%) 0.40 0.83 1.52 2.18
溶剂
烯醇式含量
(%)
丙酮 三氯甲烷 硝基苯 乙酸乙酯
7.3 8.2 10.1 12.9
甲醇
乙醇 丙醇
6.87
10.52 12.45

乙醚 二硫化碳
16.2
27.1 32.4
戊醇
15.33
己烷
46.4 化学工业出版社
由上表可以看出,烯醇式的含量和溶剂的 极性密切相关。 非质子溶剂对烯醇式有利,因为在非质子 溶剂中有利于形成分子内氢键。 质子溶剂对酮式有利,这可能是由于质子 溶剂能与酮式的羰基氧原子形成氢键, 分子内氢键就难于形成,因而降低了烯醇 式的含量。 如乙酰乙酸乙酯的烯醇式含量 在己烷中为46.4%,而在乙醇中只有10.52%。
化学工业出版社
12.4 丙二酸二乙酯
12.4.1丙二酸二乙酯的合成
CH2COONa Cl
NaCN
CH2COONa CN
C2H5OH H2SO4
COOC2H5 CH2 COOC H 2 5
O CH 3C CH 2 O CCH 3
2,4-戊二酮(乙酰丙酮)
2,4-戊二酮 ( 乙酰丙 酮)
化学工业出版社
O β-酮酸及其酯 如:
O
CH3CCH2COC2H5
3-丁酮酸乙酯(乙酰乙酸乙酯) β-二元酸及其酯 如:
O C2H5OC CH2
O COC2H5
化学工业出版社
丙二酸二乙酯
12.2 烯醇式和酮式的互变异构形象
[CH3COCHCOOC2H5]- Na+
+
C6H5COCl
CH3COCHCOOC2H5 COC6H5
①稀OH -,②H+,③Δ 酮式分解
CH3COCH2COC6H5
1-苯基-1, 3-丁二酮
化学工业出版社
2[CH3COCHCOOC2H5] Na+
①稀OH -,②H+,③Δ 酮式分解
CH3COCHCOOC2H5 CH2Cl2 CH2 CH3COCHCOOC2H5
烯醇式
酮式
沸点:41℃(267Pa)
CH CH3 C O H C OC2H5 O
33℃(267Pa)
CH3 C CH COC2H5 OH O
分子内氢键
p-π共轭 使烯醇式稳定
化学工业出版社
乙酰乙酸乙酯烯醇式含量随溶剂、浓度、温度的不同而不同。
表12 1 乙酰乙酸乙酯烯醇式在各种溶剂中的含量
溶剂
水 25%乙醇 50%甲醇 50%乙醇
CH3 C CH2COOC2H5 O
相关主题