当前位置:文档之家› 宝马525li发动机排放控制技术

宝马525li发动机排放控制技术

宝马525li发动机排放控制技术一、引言随着汽车工业的迅速发展,我国的汽车保有量急剧增加,汽车废气对空气的污染已成为严重的社会公害。

汽车排气中的CO、HC对大气产生很大的污染。

汽车排放污染对人们的生活环境造成了极大的影响,严重地威胁到人们的身体健康,同时也危害着一些动、植物的生存和生长,破坏了自然界的生态平衡。

不过汽车发动机采取一定的技术可以将污染程度降低到很低的。

比如宝马5系发动机采用涡轮增压技术,废气再循环(EGR)技术,燃油电控喷射系统,多气门技术,三元催化转化技术等技术后,完全可以满足我国目前对汽油机的排放标准(国四标准)。

二、关于排放污染物1、氮氧化合物氮氧化合物(NOx)是在内燃机气缸内大部分气体中生成的,氮氧化合物的排放量取决于燃烧温度、时间和空燃比等因素。

氮氧化合物的生成原因主要是高温富氧环境,比如燃烧室积碳等因素。

从燃烧过程看,排放的氮氧化物95%以上可能是一氧化氮,其余的是二氧化氮。

人受一氧化氮毒害的事例尚未发现,但二氧化氮是一种红棕色呼吸道刺激性气体,气味阈值约为空气质量的1.5倍,对人体影响甚大。

由于其在水中溶解度低,不易为上呼吸道吸收而深入下呼吸道和肺部,引发支气管炎、肺水肿等疾病。

在浓度为9.4mg/m³的空气中暴露10分钟,即可造成呼吸系统失调。

对于氮氧化合物世界卫生组织环境健康评价组曾做出这样的结论:二氧化氮浓度0.94mg/m-3是短期暴露引起有害影响的最低水平,0.19-0.32mg/m-3最长1小时,一个月出现不能多于两次才能确保公共健康。

2、一氧化碳一氧化碳(CO)是烃燃料燃烧的中间产物,主要是在局部缺氧或低温条件下,由于烃不能完全燃烧而产生,混在内燃机废气中排出。

当汽车负重过大、慢速行驶时或空挡运转时,燃料不能充分燃烧,废气中一氧化碳含量会明显增加。

一氧化碳是一种化学反应能力低的无色无味的窒息性有毒气体,对空气的相对密度为0.9670,它的溶解度很小。

一氧化碳由呼吸道进入人体的血液后,会和血液里的血红蛋白Hb结合,形成碳氧血红蛋白,导致携氧能力下降,使人体出现反应,如听力会因为耳内的耳蜗神经细胞缺氧而受损害等。

吸入过量的一氧化碳会使人发生气急、嘴唇发紫、呼吸困难甚至死亡。

研究证明,人对一氧化碳的承受能力相当高,一个健康的人能短时间承受血液中含量为20%~40%的一氧化碳的侵袭。

虽然对人体无副作用的一氧化碳阈值尚未确定,但长期吸收一氧化碳对城市居民身体健康是一个潜在威胁。

3、碳氢化合物对一般汽油发动机来说,约60%的碳氢化合物来自内燃机废气排放20%~25%来自曲轴箱(PCV系统)的泄漏,其余的15%~20%来自燃料系统(碳罐)的蒸发。

甲烷是窒息性气体,其嗅觉阈值是142.8mg,只有高浓度时才对人体健康造成危害。

乙烯、丙烯和乙炔则主要是对植物造成伤害,使路边的树木不能正常生长。

苯是无色类似汽油味的气体,可引起食欲不振、体重减轻、易倦、头晕、头痛、呕吐、失眠、粘膜出血等症状,也可引起血液变化,红血球减少,出现贫血,还可导致白血病。

其嗅觉阈值16.29mg,对人体健康有影响的阈值34.8mg。

汽车尾气中还含有多环芳烃,虽然含量很低,但由于多环芳烃含有多种致癌物质(如苯丙芘)而引起人们的关注。

HC和NOX在大气环境中受强烈太阳光紫外线照射后,产生一种复杂的光化学反应,生成一种新的污染物形成光化学烟雾。

4、微粒汽车尾气排放的颗粒物,一般是由直径为0.1~40μm的多孔性炭粒构成。

它能粘附SO2及苯芘有毒物质,有臭味,对人们呼吸道极为有害颗粒度较大的炭粒能迅速沉淀,不易从肺部排出。

此外,铅化合物、硫化合物等等也为有害成分。

二、宝马525li发动机排放控制技术及装置1、发动机的前处理技术(1)废气再循环系统废气再循环是指把发动机排出的部分废气回送到进气歧管,并与新鲜混合气一起再次进入气缸。

由于废气中含有大量的CO2,而CO2不能燃烧却吸收大量的热,使气缸中混合气的燃烧温度降低,从而减少了NOx的生成量。

废气再循环阀通常在下列条件下开启:1.发动机暖机运转。

2.转速超过怠速。

ECM根据发动机冷却水温传感器、节气门位置传感器和空气流量传感器来控制EGR系统。

汽油发动机在重负下时起作用,柴油发动机在发动机暖机状态时不起作用。

废气再循环(EGR)控制方式:发动机控制电脑即ECU根据发动机的转速、负荷(节气门开度)、温度、进气流量、排气温度控制电磁阀适时地打开,进气管真空度经电磁阀进入EGR阀真空膜室,膜片拉杆将EGR阀门打开,排气中的少部分废气经EGR阀进入进气系统,与混合气混合后进入气缸参与燃烧。

少部分废气进入气缸参与混合气的燃烧,降低了燃烧时气缸中的温度,因NOX是在高温富氧的条件下生成的,故抑制了NOX的生成,从而降低了废气中的NOX的含量。

但是,过度的废气参与再循环,将会影响混合气的着火、性能,从而影响发动机的动力性,特别是在发动机怠速、低速、小负荷及冷机时,再循环的废气会明显地影响发动机性能。

所以,当发动机在怠速、低速、小负荷及冷机时,ECU控制废气不参与再循环,避免发动机性能受到影响;当发动机超过一定的转速、负荷及达到一定的温度时,ECU控制少部分废气参与再循环,而且,参与再循环的废气量根据发动机转速、负荷、温度及废气温度的不同而不同,以达到废气中的NOX 最低。

(2)涡轮增压缸内直喷技术它是利用发动机排出的废气惯性冲力来推动涡轮室内的涡轮,涡轮又带动同轴的叶轮,叶轮压送由空气滤清器管道送来的空气,使之增压进入气缸。

当发动机转速增快,废气排出速度与祸轮转速也同步增快,叶轮就压缩更多的空气进入气缸,空气的压力和密度增大可以燃烧更多的燃料,相应增加燃料量就可以增加发动机的输出功率。

一般而言,加装废气涡轮增压器后的发动机功率及扭矩要增大20%—30%。

涡轮增压的优点是显而易见的,它可在不增加发动机排量的基础上,大幅度提高功率和扭矩。

一台发动机装上涡轮增压器后,其输出的最大功率与未装增压器的相比,可增加大约40%甚至更多。

这意味着一台尺寸和重量相同的发动机经增压后可以产生较多的功率,或者说,一台小排量的发动机经增压后,可以产生较大排量发动机相同的功率。

另外,发动机在采用了增压技术后,还能提高燃油经济性和降低尾气排放。

缸内直喷技术在宝马发动机中被广泛运用。

采用缸内直喷设计的最大优势,就在于燃油是以极高压力直接注入于燃烧室中,因此除了喷油嘴的构造和位置都异于传统供油系统,在油气的雾化和混合效率上也更为优异。

加上近来车上各项电子系统的控制技术大幅进步,计算机对于进气量与喷油时机的判读与控制也愈加精准,因此在搭配上缸内直喷技术以使得发动机的燃烧效率大幅提升下,除了发动机得以产生更大动力,对于环保和节能也都有正面的帮助。

采用缸内直喷的发动机除了材质上的讲究,就连活塞、燃烧室也都经过特别设计。

但是缸内直喷科技也并非无敌,因为从经济层面来看,采用缸内直喷的供油系统除了在研发过程必须花费更大成本,在部品构成复杂且精密的情况下,零组件的价格也比起传统供油系统来得昂贵,因此这些也都是未来缸内直喷发动机尚待克服的要素。

缸内直喷加上涡轮增压技术有效降低了排放。

(3)燃油蒸发控制系统油箱的燃油蒸气通过单向阀进入活性碳罐上部,空气从碳罐下部进入清洗活性碳,在碳罐右上方有一定量排放小孔及受真空控制的排放控制阀,排放控制阀沙锅内部的真空度由碳罐控制电磁阀控制,电磁阀受控制。

燃料蒸发排放控制系统主要由活性碳罐贮存装置、燃油蒸发净化控制装置和燃油箱燃油蒸发控制装置组成。

汽油是一种易挥发的液体,在常温下燃油箱经常充满蒸气,燃料蒸发控制系统的作用是将蒸气引入燃烧并防止挥发到大气中。

这个过程起重要作用的是活性碳罐贮存装置,因为活性碳有吸附功能,当汽车运行或熄火时,燃油箱的汽油蒸气通过管路进入活性碳罐的上部,新鲜空气则从活性碳罐下部进入活性碳罐。

发动机熄火后,汽油蒸气与新鲜空气在罐内混合并贮存在活性碳罐中,当发动机启动后,装在活性碳罐与进气歧管之间的燃油蒸发净化装置的电磁阀门打开,活性碳罐内的汽油蒸气被吸入进气歧管参加燃烧。

(4)曲轴箱强制通风系统强制通风方式,将曲轴箱内的混合气通过连接管导向进气管的适当位置,返回气缸重新燃烧,这样既可以减少排气污染,又提高发动机的经济性。

目前车用汽油机都采用强制性通风,汽车用柴油机也逐渐采用强制性通风。

强制性通风可分为开式和闭式两种。

开式强制曲轴箱通风装置在发动机处于全负荷低转速时,产生的串气量大,但流量控制阀开度却减小,过量的窜缸混合气会通过开式通风盖散入大气,其净化率只有75%左右。

闭式强制曲轴箱通风装置能完全实现控制曲轴箱的排放,实现曲轴箱完全通风,防止油泥和其他有害物质的积蓄,减少了发动机的故障和磨损曲轴箱强制通风系统是汽油发动机满足排放法规规定的必要设计。

2、发动机的后处理技术(1)三元催化技术三元催化器,是安装在汽车排气系统中最重要的机外净化装置,它可将汽车尾气排出的CO、HC和NOx等有害气体通过氧化和还原作用转变为无害的二氧化碳、水和氮气。

当高温的汽车尾气通过净化装置时,三元催化器中的净化剂将增强CO、HC和NOx三种气体的活性,促使其进行一定的氧化-还原化学反应,其中CO在高温下氧化成为无色、无毒的二氧化碳气体;HC化合物在高温下氧化成水(H20)和二氧化碳;NOx还原成氮气和氧气。

三种有害气体变成无害气体,使汽车尾气得以净化。

三元催化器的工作原理是:当高温的汽车尾气通过净化装置时,三元催化器中的净化剂将增强CO、HC和NOx三种气体的活性,促使其进行一定的氧化-还原化学反应,其中CO在高温下氧化成为无色、无毒的二氧化碳气体;HC化合物在高温下氧化成水(H20)和二氧化碳;NOx还原成氮气和氧气。

三种有害气体变成无害气体,使汽车尾气得以净化。

三元催化器的载体部件是一块多孔陶瓷材料,安装在特制的排气管当中。

称它是载体,是因为它本身并不参加催化反应,而是在上面覆盖着一层铂、铑、钯等贵重金属。

它可以把废气中的HC、CO 变成水和CO2, 同时把NOx 分解成氮气和氧气。

经过研究证明,三元催化器是减少这些排放物的最有效的方法。

通过氧化和还原反应,一氧化碳被氧化成二氧化碳,碳氢化合物被氧化成水和二氧化碳,氮氧化合物被还原成氮气和氧气。

三种有害气体都变成了无害气体。

三元催化剂最低要在250 摄氏度的时候起反应,温度过低时,转换效率急剧下降;而催化剂的活性温度( 最佳的工作温度) 是400 ℃到800 ℃左右,过高也会使催化剂失效加剧。

在理想的空燃比(14.7 :1) 下,催化转化的效果也最好。

三、总结随着人们对全球气候变暖和空气污染的重视程度的提高,世界各大汽车企业和研究机构都投入了大量的经费来研究汽车发动机的燃烧及后处理技术,提出了许多新的思路和方法,从不同的角度来解决汽车的燃料经济性和有害气体的排放问题,并且都取得了一定的成效,了解并掌握汽车发动机污染控制的最新技术并加以应用,不但可以增强其产品的技术含量,而且可以提高其产品的市场竞争力和企业的生命力,因此现代汽车采用排放控制技术汽车尾气排放的控制起着重要作用。

相关主题