当前位置:文档之家› 失效模式分析

失效模式分析


机械磨损
接触不良
平衡状态破坏
相变化、应力松弛
化学反应
腐蚀、氧化、
电应力
电介质击穿、脉冲
热应力
摩擦
渗透
湿气、气体、流体
4-9
断裂分类: 根据裂纹发展过程 沿晶断裂 穿晶断裂 根据受载性质 疲劳断裂 静载断裂 冲击断裂 根据完全断裂前的宏观变形 脆性断裂 韧性断裂
4-10
疲劳断裂原因:
疲劳源
裂纹扩 展区
失效模式相对频率
4-18
3、产品严重度数字
n
Cr (Pt 106)
i 1
i 属于某一严重度的失效模式数 n 产品在该严重度下的最后一个失效模式
4-19
若某产品的失效率 p 7.2 106 h1 ,在某一任务阶段,出现两个II
级严重的失效模式和一个IV严重失效模式。这三个失效模式的相对频率
载荷因素: 载荷性质、大小、变化速度等
瞬断区
材质因素:材料的成分、机械性能、冶金特性等 表面因素:表面粗糙度、划痕、碰伤等
几何因素:圆角、倒角等
环境因素:环境介质、环境温度等
4-11
FMECA分析实例1
例 某一固体火箭发动机由推进剂药柱、内衬和发动机壳组成。绘制其 失效模式后果分析表
项目 失效模式
失效原因
可能后果
发动机 壳
破裂
工艺质量差 材料缺陷
运输中损坏 搬运中损坏
内压过高
导弹毁坏
推进剂 药柱
断裂 孔穴 粘接面分离
固化残余应力 温度过低 老化
燃烧速度过 高;内压过 高;机壳在 工作过程中 破裂
内衬
与外壳分离
与药柱或隔 热层分离
粘接剂不良 粘接控制不良
壳体成形后净 化不够
燃烧速度过 高;内压过 高;机壳在 工作过程中 破裂
横向加速度 影响小,对
过高
所有转向架
影响皆相同
加速度超过正 常值,横向钢 轨力增加
4-27
机车车辆转向架FMEA表格(续)
代码与零部件 故障类型 名称
210车轮/钢轨
车轮与钢轨 的接触尺寸 不当
影响分析
磨损车轮型 面快速形成 大锥度
危害评价
危险性
不良的接触影 B 响转向架稳定 性的灵敏度
轴箱过热
230轮对轴承
控制信号错 420轮对导向装 误

影响分析
导致受控零 部件不能正 常工作
危害评价
危险性
C 危害高速运行 时的安全500转向架转向架构架 可能不会发
断裂

危害运行安全 C
700车体
车体支撑与
固定系统断 可能不会发


危害运行安全 C
4-30
机车车辆转向架FMEA表格(续)
代码与零部件 故障类型 名称
FMECA分析的用途
1、在设计管理上的用途
FMECA与线路应力分析的结合是可靠性预测、分配和评定 时的一项原始资料。 FMECA 是评定设计方案的手段 FMECA 是设计评审、质量复查、事故预想的依据和证明 2、在其他用途
安排测试点、制造和质量控制,制定试验计划的一种依据。
制定检测程序、设计诊断装置的基础。 与试验结果和失效分析报告一起进行定性评定。 可靠性维修,后勤保障分析的原始资料。
4-13
4-14
4-15
4-16
§4.3 严重度分析
一、定性分析
A级,常发生。单一失效模式发生概率大于系统总失效 概率的20%。
B级,较常发生。单一失效模式发生概率在系统总失效 概率的10%~20%。
C级,偶尔发生。单一失效模式发生概率在系统总失效 概率的1%~10%。
D级,很少发生。单一失效模式发生概率在系统总失效 概率的0.1%~1%。
失效模式、后果与严重度分析 (FMECA)
Failure Mode Effect and Criticality Analysis §1 概述 §2 失效模式与后果分析 §3 严重度分析
4-1
§1 概述
失效的定义: 1、设备在规定条件下,不能完成其规定的功能; 2、设备在规定条件下,一个或几个不能达到其规定值; 3、由于环境应力变化,导致功能丧失; 4、即使设备在规定条件下具有完成规定功能的能力 ,但因操作者的失误而造成产品功能丧失;
故障模式的比率
故障模式比率——产品出现失效模式的百分比
进一步分析失效原因,采取预防措施的可靠依据
4-4
几种机械零部件的失效模式及其比率
轴承 离合器 连接器 齿轮 发电机
腐蚀
18.7
-
6.3
-
6.3
蠕变
-
-
-
-
-
形变
2.5
6.6
23.7
20
2.1
侵蚀
3.1
-
-
-
-
疲劳
4.4
-
1.7
-
-
摩擦
10.6
-
2、B型故障:产品功能的逐渐退化 引入一个正常的检测系统
3、C型故障:产品功能的突然丧失
4-26
机车车辆转向架FMEA表格
代码与零部件 故障类型 名称
110钢轨(使用 区域)
横向位移阻 力降低,钢 轨型面不符 合设计规范
影响分析
影响低,对 所有转向架 影响皆相同
危害评价
危险性
在最大运行速 A 度时测得的钢 轨力是安全的
4-23
方法描述:
1、部件描述 2、与安全有关的各种部件的描述 3、可能的故障 4、损坏特征、可能的原因及其影响的评估 5、故障检测 6、目前的改进措施 7、对系统的影响
4-24
转向架 系统
钢轨使 用区域
100
钢轨与 轴箱间 的部件
200
轴箱 300
轴箱与 转向架 间部件
400
轮/轨 210
轮对 220
4-7
输 入 原 始 资 料
分析 系统 结构 及各 组成 部分 功用
构造 系统 的可 靠性 框图
列出各 功能级 的失效 模式机 理效应
研究 失效 检测 方法
可 能 的 预 防 措 施
致命性 分析
失效模 式概率
致命度 的估计
输出填写
FMECA 表格
FMECA分析过程
4-8
零件材料失效原因的分类
机械因子 弹性变形、塑性变形、蠕变、疲劳、断裂、滑移
分别为:1 0.3,2 0.2,3 0.5 ,失效后果概率均为0.5,在该阶
段工作时间为1h,求该产品在此任务阶段,在严重性II下的 Cm,Cr 。
求 Cm II级严重性的第一个失效模式的严重度数字为
Cm Pt 106
0.5 0.3 0.72 106 1106 1.08
II级严重性的第二个失效模式的严重度数字为 Cm Pt 106 0.5 0.2 0.72 106 1106 0.72
空气弹簧压 610二系弹簧悬 力不同

影响分析
较少发生
危害评价
危险性
由于空簧压力 B 不同引起轮载 变化
4-31
FMECA
FMEA 失效模式与后果分析 CA 严重度分析
一、FMEA
1、功能FMEA和硬件FMEA 功能FMEA
设计初期 复杂系统
硬件FMEA
4-6
2、FMEA 程序 FMEA基本程序: 1、确定失效模式 2、绘制系统功能图和可靠性框图 3、确定工作参数和功能 4、查明所有失效模式、发生原因及后果 5、按可能的最坏后果评定失效模式的严重性级别 6、确定失效模式的检测方法及补救预防措施 7、提出修改方案及其他措施 8、提交分析报告
E级,极少发生。单一失效模式发生概率小于系统总失效 概率 的0.1%。
4-17
二、定量分析 1、失效后果概率
失效后果 必然损失 偶然损失 很少损失 无影响

1.0
0.1 1.0 0 0.1
0
2、失效模式严重度数字
Cm Pt 106 失效率后果 P 元件失效率×10-6/h为单位
t 任务阶段内的工作时间
影响不可避 免
如果不及时报 告,运行危险
B
300轴箱
轴箱破损
一般不会发 运行危险 生
C
4-28
机车车辆转向架FMEA表格(续)
代码与零部件 故障类型 名称
一系弹簧断 410一系弹簧 裂
影响分析
可能不会发 生
危害评价
危险性
危害运行安全 C
4-29
机车车辆转向架FMEA表格(续)
代码与零部件 故障类型 名称
-
-
1.5
氧化
-
-
-
-
-
绝缘
-
-
1.6
-
12.3
裂痕
0.5
-
-
-
-
磨损
60.2 83.4 8.1
60
25.1
断裂
-
10.0 47.1
20
4.6
其它
-
-
11.5
-
16.1
电位器 27.5 10 25 15 22.5
继电器 12.3 0.4 2.3 2.6 12.3 2.4 17.5 11.9
4-5
§2 失效模式与后果分析
E 低
IV
III
II
严重性级别 严重性级别
严 重 度 增 加
I
4-22
机车车辆 FMEA分析实例
国际铁路联盟的研究与试验机构的B176委员会 (UIC ORE B176)
对机车车辆转向架进行了深入的研究,进行了大量的 实验和评估,并为选择高速机车车辆的样机转向架进 行了费用—效能分析。
相关主题