当前位置:文档之家› 常微分方程考研讲义 一阶微分方程解的存在定理

常微分方程考研讲义 一阶微分方程解的存在定理

第三章一阶微分方程解的存在定理[教学目标]1.理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练近似解的误差估计式。

2.了解解的延拓定理及延拓条件。

3.理解解对初值的连续性、可微性定理的条件和结论。

[教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的证明。

[教学方法] 讲授,实践。

[教学时间] 12学时[教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延拓条件,解对初值的连续性、可微性定理及其证明。

[考核目标]1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。

2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。

3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。

§1 解的存在性唯一性定理和逐步逼近法微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。

在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。

而实际问题中所需要的往往是要求满足某种初始条件的解。

因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。

他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。

例如方程过点(0,0)的解就是不唯一,易知0y=是方程过(0,0)的解,此外,容易验证,2=或更一般地,函数y x都是方程过点(0,0)而且定义在区间01<<的任一数。

c≤≤上的解,其中c是满足01x解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性和唯一性。

另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义;如果存在不唯一,不能确定所求的是哪个解。

而解的存在唯一性定理保证了所求解的存在性和唯一性。

1.存在性与唯一性定理: (1)显式一阶微分方程 ),(y x f dxdy= (3.1)这里),(y x f 是在矩形域:00:||,||R x x a y y b -≤-≤ (3.2) 上连续。

定理1:如果函数),(y x f 满足以下条件:1)在R 上连续:2)在R 上关于变量y 满足李普希兹(Lipschitz )条件,即存在常数0L >,使对于R 上任何一对点1(,)x y ,2(,)x y 均有不等式1212(,)(,)f x y f x y L y y -≤-成立,则方程(3.1)存在唯一的解()y x ϕ=,在区间0||x x h -≤上连续,而且满足初始条件00()x y ϕ=(3.3) 其中,min(,),max (,)x y R bh a M f x y M∈==,L 称为Lipschitz 常数.思路:1) 求解初值问题(3.1)的解等价于积分方程 的连续解。

2) 构造近似解函数列{()}n x ϕ任取一个连续函数0()x ϕ,使得00|()|x y b ϕ-≤,替代上述积分方程右端的y ,得到如果10()()x x ϕϕ≡,那么0()x ϕ是积分方程的解,否则,又用1()x ϕ替代积分方程右端的y ,得到如果21()()x x ϕϕ≡,那么1()x ϕ是积分方程的解,否则,继续进行,得到01()(,())xn n x x y f x x dx ϕϕ-=+⎰(3.4)于是得到函数序列{()}n x ϕ.3) 函数序列{()}n x ϕ在区间00[,]x h x h -+上一致收敛于()x ϕ,即 存在,对(3.4)取极限,得到 即00()(,())xx x y f x x dx ϕϕ=+⎰.4) ()x φ是积分方程00(,)xx y y f x y dx =+⎰在00[,]x h x h -+上的连续解.这种一步一步求出方程解的方法——逐步逼近法.在定理的假设条件下,分五个命题来证明定理.为了讨论方便,只考虑区间00x x x h ≤≤+,对于区间00x h x x -≤≤的讨论完全类似.命题1 设()y x ϕ=是方程(3.1)定义于区间00x x x h ≤≤+上,满足初始条件00()x y ϕ= (3.3)的解,则()y x ϕ=是积分方程00(,)xx y y f x y dx =+⎰ 00x x x h ≤≤+(3.5)的定义于00x x x h ≤≤+上的连续解.反之亦然.证明 因为()y x ϕ=是方程(3.1)满足00()x y ϕ=的解,于是有 两边取0x 到x 的积分得到即有00()(,())xx x y f x x dx ϕϕ=+⎰ 00x x x h ≤≤+所以()y x ϕ=是积分方程00(,)xx y y f x y dx =+⎰定义在区间00x x x h ≤≤+上的连续解.反之,如果()y x ϕ=是积分方程(3.5)上的连续解,则00()(,())xx x y f x x dx ϕϕ=+⎰ 00x x x h ≤≤+(3.6)由于),(y x f 在R 上连续,从而(,())f x x ϕ连续,两边对x 求导,可得 而且 00()x y ϕ=,故()y x ϕ=是方程(3.1)定义在区间00x x x h ≤≤+上,且满足初始条件00()x y ϕ=的解. 构造Picard 的逐次逼近函数序列{()}n x ϕ.0000100()()(,()) x nn x x y x y f d x x x h ϕϕξϕξξ-=⎧⎪⎨=+≤≤+⎪⎩⎰(1,2,)n =(3.7)命题2 对于所有的n ,(3.6)中的函数()n x ϕ在00x x x h ≤≤+上有定义,连续且满足不等式0|()|n x y b ϕ-≤ (3.8)证明 用数学归纳法证明当1n =时,0100()(,)xx x y f y d ϕξξ=+⎰,显然1()x ϕ在00x x x h ≤≤+上有定义、连续且有 即命题成立.假设n k =命题2成立,也就是在00x x x h ≤≤+上有定义、连续且满足不等式 当1n k =+时,由于),(y x f 在R 上连续,从而(,())k f x x ϕ在00x x x h ≤≤+上连续,于是得知1()k x ϕ+在00x x x h ≤≤+上有定义、连续,而且有即命题2对1n k =+时也成立.由数学归纳法知对所有的n 均成立.命题3 函数序列{()}n x ϕ在00x x x h ≤≤+上是一致收敛的.记lim ()()n n x x ϕϕ→∞=,00x x x h ≤≤+证明 构造函数项级数011()[()()]k k k x x x ϕϕϕ∞-=+-∑ 00x x x h ≤≤+(3.9) 它的部分和为于是{()}n x ϕ的一致收敛性与级数(3.9)的一致收敛性等价. 为此,对级数(3.9)的通项进行估计.01000|()()||(,())|()xx x x f d M x x ϕϕξϕξξ-≤≤-⎰(3.10)由Lipschitz 条件得知 设对于正整数n ,有不等式成立,则由Lipschitz 条件得知,当00x x x h ≤≤+时,有 于是由数学归纳法可知, 对所有正整数k ,有1110|()()|() !!k k kk k k ML ML x x x x h k k ϕϕ----≤-≤ 00x x x h ≤≤+(3.11)由正项级数11!kK k h MLk ∞-=∑ 的收敛性,利用Weierstrass 判别法,级数(3.9)在00x x x h ≤≤+上一致收敛.因而序列{()}n x ϕ在00x x x h ≤≤+上一致收敛.设lim ()()n n x x ϕϕ→∞=,则()x ϕ也在00x x x h ≤≤+上连续,且命题4 ()x ϕ是积分方程(3.5)的定义在00x x x h ≤≤+上的连续解.证明 由Lipschitz 条件以及{()}n x ϕ在00x x x h ≤≤+上一致收敛于()x ϕ,可知(,())n f x x ϕ在00x x x h ≤≤+上一致收敛于(,())f x x ϕ.因此即 00()(,()) xn x x y f d ϕξϕξξ=+⎰故()x ϕ是积分方程(3.5)的定义在00x x x h ≤≤+上的连续解.命题5 设()x ψ是积分方程(3.5)的定义在00x x x h ≤≤+上的一个连续解,则()()x x ϕψ≡,00x x x h ≤≤+.证明 设()|()()|g x x x ϕψ=-,则()g x 是定义在00x x x h ≤≤+的非负连续函数,由于 而且(,)f x y 满足Lipschitz 条件,可得令0()()xx u x L g d ξξ=⎰,则()u x 是00x x x h ≤≤+的连续可微函数,且0()0u x =,0()()g x u x ≤≤,()()u x Lg x '=,()()u x Lu x '≤,(()())0Lx u x Lu x e -'-≤,即(())0Lx u x e -'≤,于是在00x x x h ≤≤+上, 00()()0Lx Lx u x e u x e --≤=故()()0g x u x ≤≤,即()0g x ≡,00x x x h ≤≤+,命题得证.对定理说明几点:(1)存在唯一性定理中min(,)bh a M=的几何意义. 在矩形域R 中(,)f x y M ≤,故方程过00(,)x y 的积分曲线()y x ϕ=的斜率必介于M -与M 之间,过点00(,)x y 分别作斜率为M -与M 的直线.当b M a ≤时,即ba M ≤,(如图(a)所示),解()y x ϕ=在00x a x x a -≤≤+上有定义;当b M a ≥时,即ba M≤,(如图(b)所示),不能保证解在00x a x x a -≤≤+上有定义,它有可能在区间内就跑到矩形R 外去,只有当00b bx x x M M-≤≤+才能保证解()y x ϕ=在R 内,故要求解的存在范围是0||x x h -≤.(2)、 由于李普希兹条件的检验是比较费事的,而我们能够用一个较强的,但却易于验证的条件来代替他,即如果函数),(y x f 在矩形域R 上关于y 的偏导数),('y x f y 存在并有界,即'(,)y f x y L ≤,则李普希兹条件条件成立. 事实上 这里12(,),(,),01x y x y R θ∈<<. 如果),('y x f y 在R 上连续,它在R 上当然满足李普希兹条件.但是,满足李普希兹条件的函数),(y x f 不一定有偏导数存在.例如函数(,)||f x y y =在任何区域都满足李普希兹条件,但它在0y =处没有导数. (3)、设方程(3.1)是线性的,即方程为易知,当(),()P x Q x 在区间[,]αβ上连续时,定理1的条件就能满足,且对任一初值000(,),[,]x y x αβ∈所确定的解在整个区间[,]αβ上有定义、连续.实际上,对于一般方程(3.1),由初值所确定的解只能定义在0||x x h -≤上,是因为在构造逐步逼近函数序列{()}n x ϕ时,要求它不越出矩形域R ,此时,右端函数对y 没有任何限制,只要取0[,]max |()()|x M P x y Q x αβ∈=+.(4)、Lipschitz 条件 是保证初值问题解惟一的充分条件,而非必要条件. 例如 试证方程经过xoy 平面上任一点的解都是唯一的.证明 0y ≠时, (,)ln ||f x y y y =,在0y ≠上连续, (,)1ln ||y f x y y '=+也在0y ≠上连续,因此对x 轴外的任一点00(,)x y ,方程满足00()y x y =的解都是唯一存在的.又由可得方程的通解为 x ce y e =±,其中xce y e =为上半平面的通解, xce y e =-为下半平面的通解,它们不可能与0y =相交.注意到0y =是方程的解,因此对x 轴上的任一点0(,0)x ,只有0y =通过,从而保证xoy 平面上任一点的解都是唯一的. 但是因为0lim |ln |||y y →=+∞,故不可能存在0L >,使得所以方程右端函数在0y =的任何邻域并不满足Lipschitz 条件.此题说明Lipschitz 条件 是保证初值问题解惟一的充分条件,而非必要条件.2)考虑一阶隐方程(,,)0F x y y '= (3.12)由隐函数存在定理,若在000(,,)x y y '的某一邻域内F 连续且000(,,)0F x y y '=,而0Fy ∂≠'∂,则必可把y 唯一地表为,x y 的函数(,)y f x y '= (3.13)并且(,)f x y 于00(,)x y 的某一邻域连续,且满足000(,)y f x y '= 如果F 关于所有变元存在连续的偏导数,则(,)f x y 对,x y 也存在连续的偏导数,并且/f F Fy y y ∂∂∂=-'∂∂∂ (3.14)显然它是有界的,由定理1可知,方程(3.13)满足初始条件的0()0y x =解存在且唯一.从而得到下面的定理.定理2 如果在点000(,,)x y y '的某一邻域中: ⅰ) (,,)F x y y '关于所有变元(,,)x y y '连续,且存在连续的偏导数;ⅱ)000(,,)0F x y y '=ⅲ)000(,,)0F x y y y '∂≠'∂则方程(3.12)存在唯一的解0() || y y x x x h =-≤(h 为足够小的正数) 满足初始条件0000(), ()y x y y x y ''== (3.15)1、 近似计算和误差估计求方程近似解的方法——Picard 的逐次逼近法对方程的第n 次近似解()n x ϕ和真正解()x ϕ在0||x x h -≤内的误差估计式1|()()|(1)!n n n ML x x h n ϕϕ+-≤+ (3.16)此式可用数学归纳法证明. 设有不等式 成立,则例1 讨论初值问题22dyx y dx=+, (0)0y = 解的存在唯一性区间,并求在此区间上与真正解的误差不超过0.05的近似解,其中, :11,11R x y -≤≤-≤≤.解 (,)1max |(,|2,1,1,min{,}2x y Rb M f x y a b h a M ∈======,由于|||2|2f y L y ∂=≤=∂,根据误差估计式(3.16)可知3n =.于是3()x ϕ就是所求的近似解,在区间1122x -≤≤上,这个解与真正解得误差不超过0.05.§2 解的延拓上节我们学习了解的存在唯一性定理,当),(y x f dx dy=的右端函数),(y x f 在R 上满足解的存在性唯一性条件时,初值问题⎪⎩⎪⎨⎧==)(),(00x y y y x f dxdy的解在0||x x h -≤上存在且唯一. 但是,这个定理的结果是局部的,也就是说解的存在区间是很小的.可能随着),(y x f 的存在区域的增大,而能肯定的解得存在区间反而缩小。

相关主题