当前位置:文档之家› 高分子物理-第七章

高分子物理-第七章

必须同时考虑应力、应变、时间和 温度四个参数。高聚物材料的力学 性能对时间和温度的强烈依赖性是 研究其力学性能中要着重弄清的问 题,也是进行高聚物材料的测试及 使用时必须十分注意的问题。
第二节 高弹性
• 2-1 高弹性的特点 • 2-2 平衡态高弹性热力学分析 • 2-3 橡胶的使用温度
2-1 高弹性的特点
第七章 高聚物的力学性能
第一节 第二节 第三节 第四节 概述 高弹性 粘弹性 极限力学行为(屈服、破坏与 强度)
第一节 概述
• 1-1 力学性能分类 • 1-2 表征力学性能的基本物理量 • 1-3 高聚物力学性能的特点
1-1 力学性能分类
• 力学性能是高聚物优异物理性能的基础 • 如:某高聚物磨擦,磨耗性能优良,但力
• 高弹态是高聚物所特有的,是基于链段
运动的一种力学状态,可以通过高聚物 在一定条件下,通过玻璃化转变而达到 • 处于高弹态的高聚物表现出独特的力学 性能——高弹性 • 这是高聚物中一项十分难能可贵的性能
• 橡胶就是具有高弹性的材料,高弹性
的特征表现在: • ①弹性形变大,可高达1000%,而金 属材料的普弹形变不超过1% 10 达因 cm • ②弹性模量小, ,而且随绝对 温度升高而升高;而金属材料的弹性 达因 10 模量达 cm ,而且随绝对温度升 高而降低
3.降低聚合物结晶能力 线型聚乙烯分子链很柔,Tg 很低,但由 于规整度高,所以结晶,聚乙烯难以当 橡胶用,引入体积较小的非极性取代基 甲基来破坏其聚乙烯分子链的规整性, 从而破坏其结晶性,这就是乙烯与丙烯 共聚橡胶 Tg =-60℃。
• 通过破坏链的规整性来降低聚合物
结晶能力,改善了弹性但副作用是 有损于强度。
粘 性 Viscosity
asticity 粘弹性 viscoelasticity 非线性粘弹性
蠕 变
滞 后 力学损耗
动 态 Dynamic
Non-Linear viscoelasticity
强 度 断裂性能 Fracture 韧 性
Strength
Toughness
间的变化 • 强度:材料所能承受的应力 • 韧性:材料断裂时所吸收的能量
1-2 表征材料力学性能的基本物理量
受 简单拉伸 力 F 方 l0 式
F
简单剪切
F
θ F
均匀压缩
参数
, , , , ,
受 力 特 点
外力F是与截面 外力F是与界面 材料受到的 是围压力。 垂直,大小相等, 平行,大小相 方向相反,作用 等,方向相反 在同一直线上的 的两个力。 两个力。
张应变: 应变
l l0 l0
切应变:
r tg
压缩应变:
V V0
真应变:
dli l0 l i
l
是偏斜角
F 张应力:
切应力:
s
F A0
压力P
A0
F A
应力
真应力:

弹 性 模 量
杨氏模量:
E
切变模量:
G=
体积模量:
B P PV 0 V
S f T ( ) l ,V T
• 既然拉伸时熵减小,dS 为负值,所以
也应该是负值,说明了拉伸 过程中为什么放出热量。 由于理想高弹体拉伸时只引起熵变, 或者说只有熵的变化对理想高弹体的 弹性有贡献,也称这种弹性为熵弹性
dQ TdS
2-3 橡胶的使用温度
• 在高于一定温度时,橡胶由于老化而
F A0 l l0
s
r

F A0 tg
泊淞比:

m m l l 横向单向单位宽度的 纵向单位宽度的增加
柔 量 机械 强度
拉伸柔量:
1 D E
切变柔量:
J 1 G
可压缩度:
1 B
1-3 高聚物力学性能的特点
• 1.高聚物材料具有所有已知材料
可变性范围最宽的力学性质,包括 从液体、软橡皮到很硬的固体,各 种高聚物对于机械应力的反应相差 很大,例如:
• PS制品很脆,一敲就碎(脆性) • 尼龙制品很坚韧,不易变形,也不易
破碎(韧性) • 轻度交联的橡胶拉伸时,可伸长好几 倍,力解除后基本恢复原状(弹性) • 胶泥变形后,却完全保持新的形状 (粘性) • 高聚物力学性质的这种多样性,为不 同的应用提供了广阔的选择余地
• 2.高聚物力学性能的最大特点是
(2)高聚物的粘弹性:指高聚物材料 不但具有弹性材料的一般特性,同时 还具有粘性流体的一些特性。弹性和 粘性在高聚物材料身上同时呈现得特 别明显。 • 高聚物的粘弹性表现在它有突出的力 学松弛现象,在研究它的力学性能时 必须考虑应力、应变与时间的关系。 温度对力学性能也是非常重要的因素
• 描述粘弹性高聚物材料的力学行为
常用术语: • 力学行为:指施加一个外力在材料上, 它产生怎样的形变(响应) • 形变性能:非极限情况下的力学行为 • 断裂性能:极限情况下的力学行为 • 弹性:对于理想弹性体来讲,其弹性 形变可用虎克定律来表示,即:应力 与应变成正比关系,应变与时间无关
• 粘性:在外力作用下,分子与分子之
间发生位移,理想的粘性流体其流动 形变可用牛顿定律来描述:应力与应 变速率成正比 • 普弹性:大应力作用下,只产生小的、 线性可逆形变,它是由化学键的键长, 键角变化引起的。与材料的内能变化 有关:形变时内能增加,形变恢复时, 放出能量,对外做功(玻璃态,晶态, 高聚物,金属,陶瓷均有这种性能), 普弹性又称能弹性
(4)主链上含有O原子的聚醚橡胶
O CH2
(5)主链上均为非碳原子的二甲基硅橡胶
CH3 O Si CH3
• 2.改变取代基结构 • 带有供电子取代基的橡胶易氧化:
天然橡胶、丁苯橡胶 • 带有吸电子取代基的橡胶不易氧化: 氯丁橡胶、氟橡胶
• 3.改变交联链的结构 • 原则:含硫少的交联链键能较大,耐
第三节 粘弹性
• • • • • • • • •
3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 松弛现象 蠕变 应力松弛 滞后 力学损耗 测定粘弹性的方法 粘弹性模型 粘弹性与时间、温度的关系(时温等效) 波尔兹曼迭加原理
3-1 高聚物的力学松弛现象
• 力学松弛——高聚物的力学性能随时
• 高弹性:小的应力作用下可发生很大
的可逆形变,是由内部构象熵变引起 的,所以也称熵弹性(橡胶具有高弹 性) • 静态力学性能:在恒应力或恒应变情 况下的力学行为 • 动态力学性能:物体在交变应力下的 粘弹性行为 • 应力松弛:在恒应变情况下,应力随 时间的变化
• 蠕变:在恒应力下,物体的形变随时
作 f ~ T 图:
f
77% 33%
11%
4%
T (K )
固定拉伸时的张力-温度曲线
• 截距为 ;斜率为 。 • 发现各直线外推到 T 0 时均通过原
点,即截距为0
u ( )T ,V l
f ( ) l ,V T
• 得: • 所以橡胶拉伸时,内能几乎不变,而主
要引起熵的变化。就是说,在外力作用 下,橡胶分子链由原来蜷曲无序的状态 变为伸直有序状态。熵由大变小,由无 序变有序;终态是不稳定体系,当外力 除去以后,就会自发地恢复到初态,也 就是说,橡皮由拉伸态恢复到原来状态 是熵增过程(自发过程),也就解释了 高弹形变为什么是可回复的。
• 原因:由于橡胶是长链分子,整个分
子的运动都要克服分子间的作用力和 内摩擦力,高弹形变就是靠分子链段 运动来实现的。整个分子链从一种平 衡状态过度到与外力相适应的平衡状 态,可能需要几分钟,几小时甚至几 年。也就是说在一般情况下形变总是 落后与外力,所以橡胶形变需要时间
2-2 平衡态高弹形变的热力学分析
S G G f ( )T ,V [ ( )l ,P ]T ,V [ ( )T ,P ]l ,V ( )l ,V l l T l T T
u f f ( )T ,V T ( )l ,V l T
• 这就是橡胶热力学方程式 • 实验时用 f 当纵坐标,T为横坐标,
6~ 7 2
11~12 2
• ③在快速拉伸时(绝热过程),高聚
物温度上升;而金属材料温度下降。 如果把橡胶薄片拉长,把它贴在嘴唇 或面颊上,就会感到橡皮在伸长时发 热,回缩时吸热。 • ④形变与时间有关,橡胶受到外力 (应力恒定)压缩或拉伸时,形变总 是随时间而发展,最后达到最大形变, 这种现象叫蠕变。
g g g g g g
• 注意增塑剂的副作用
它使分子链活动性增加,也为形成 结晶结构创造了条件,所以用增塑 剂降低 T 的同时,也要考虑结晶形 成的可能性。
g
2.用共聚法 聚苯乙烯有大的侧基,所以主链内旋转 难,较刚性,Tg 高于室温,但共聚后 的丁苯橡胶为-53℃ 聚丙烯晴有极性,所以主链内旋转难, Tg 较刚性, 高于室温,用丁二烯与丙 烯晴共聚后的丁睛橡胶为-42℃
失去弹性;在低于一定温度时,橡胶 由于玻璃化而失去弹性。 • 如何改善橡胶的耐热性和耐寒性,即 扩大其使用温度的范围是十分重要的。
一.改善高温耐老化性能,提高耐热性 硫化的橡胶具有交联的网状结构,除非 分子链断裂或交联链破坏,否则不会流 动的,硫化橡胶耐热性似乎是好的。但 实际硫化橡胶在120℃已难以保持其物理 机械性能,170~180℃时已失去使用价 值,为什么呢?橡胶主链中含有大量双 键,易被臭氧破坏而裂解,双键旁的α 次甲基上的氢容易被氧化而降解或交联
• 高弹形变可分为平衡态形变(可逆)
和非平衡态形变(不可逆)两种 • 假设橡胶被拉伸时发生高弹形变,除 去外力后可完全回复原状,即变形是 可逆的,所以可用热力学第一定律和 第二定律来进行分析
u S f ( )T ,V T ( )T ,V l l
相关主题