当前位置:文档之家› 扫描电镜,透射电镜

扫描电镜,透射电镜

扫描电镜,透射电镜技术㈠序言1.电镜发展史2.电镜在生物医学中的作用3.电镜进展:超高压电镜、扫描透射电镜、扫描隧道显微镜、分析电镜等4.电镜与其它显微镜的区别㈡透射电镜1.概述2. 基本原理3.结构和操作㈢扫描电镜1.概述2.成像原理3. 结构和操作㈣超薄切片技术1.电镜对标本的要求2.标本制备过程3.人工假象问题㈤扫描电镜样品制备1.取材和予处理2.生物样品干燥3.生物样品导电㈥免疫电镜1.概述2.方法3.免疫金探针技术㈦细胞化学技术1.概述2.电得赶胞化学技术㈧细胞超微结构1.正常细胞超微结构2.超微结构的病理变化3.人工假象电子显微镜(electron microscope)利用电子束对样品放大成像的显微镜,简称电镜。

电镜的放大倍率可达百万,可分辨样品的最小细节为几个埃,而光学显微镜的放大倍率不过几千,其分辨率在理论上不能小于0.2微米,这是因为受光波波长的局限, 即可见光的波长不能小于4000埃。

为此,它促使人们去寻找更短波长的照明物质。

根据波动学说,运动着的电子可以看作是一种电子波。

电子运动的速度越高,电子波的波长越短。

例如受200千伏高压加速的电子,其波长仅为0.025埃。

这表明电子是一种理想的新光源。

此外,20世纪20~30年代,证实了轴对称分布的电磁场具有能使电子束偏转、聚焦的作用,从而找到了相当于光学显微镜中的透镜──电子透镜。

这就是具有高分辨率的电子显微镜产生的基础。

电子显微镜分为透射电镜和扫描电镜两大类(见彩图显微镜19世纪中期显微镜、显微镜带自动照相机的光学显微镜、显微镜装有场发射枪的扫描电子显微镜,分辨率为20□、显微镜超高压透射电子显微镜,加速电压可达到2000kV、显微镜R.虎克在17世纪中期制做的复式显微镜、显微镜20世纪初期的显微镜,数值孔径达1.4)。

从性能方面看,光学显微镜不仅分辨率低,而且景深也很短。

透射电镜具有极高的分辨率,但由于必须采用超薄样品(如厚度为几百甚至几十埃),所以景深的问题不突出。

扫描电镜则在这个意义上填补了两者的空隙,即既有高分辨率,又有大景深(见表各类显微镜的光学参数)。

注:此处所用电镜荧光屏尺寸为100平方毫米,观察者距荧光屏的位置为25厘米,人眼分辨率为0.2毫米。

透射电镜原理透射电镜的工作原理和普通光学显微镜非常相似,包括照明系统、成像系统和观察、照相室等。

扫描电镜结构和原理扫描电镜利用从块状样品表面收集到的信号电子成像,因此相当于一种“反射式”显微镜(个别情况下也可采用透射模式)。

发展方向70年代以来,电镜的发展主要在:①不断提高分辨率,以求观察更精细的物质结构、微小的实体以至单个原子;②研制超高压电镜和特殊环境的样品室,以研究物体在自然状态下的形貌及动态性质;③研制能对样品进行综合分析(包括形态、结构和化学成分等)的设备。

----------------------------------------------------------------------------------第一节扫描电子显微镜(刘健魏正乾)扫描电子显微镜的设计思想和工作原理,早在1935年便已被提出来了。

1942年,英国首先制成一台实验室用的扫描电镜,但由于成像的分辨率很差,照相时间太长,所以实用价值不大。

经过各国科学工作者的努力,尤其是随着电子工业技术水平的不断发展,到1956年开始生产商品扫描电镜。

近数十年来,扫描电镜已广泛地应用在生物学、医学、冶金学等学科的领域中,促进了各有关学科的发展。

一.扫描电镜的特点和光学显微镜及透射电镜相比,扫描电镜具有以下特点:(一) 能够直接观察样品表面的结构,样品的尺寸可大至120mm×80mm×50mm。

(二) 样品制备过程简单,不用切成薄片。

(三) 样品可以在样品室中作三度空间的平移和旋转,因此,可以从各种角度对样品进行观察。

(四) 景深大,图象富有立体感。

扫描电镜的景深较光学显微镜大几百倍,比透射电镜大几十倍。

(五) 图象的放大范围广,分辨率也比较高。

可放大十几倍到几十万倍,它基本上包括了从放大镜、光学显微镜直到透射电镜的放大范围。

分辨率介于光学显微镜与透射电镜之间,可达3nm。

(六) 电子束对样品的损伤与污染程度较小。

(七) 在观察形貌的同时,还可利用从样品发出的其他信号作微区成分分析。

二.扫描电镜的结构和工作原理(一) 结构1.镜筒镜筒包括电子枪、聚光镜、物镜及扫描系统。

其作用是产生很细的电子束(直径约几个nm),并且使该电子束在样品表面扫描,同时激发出各种信号。

2.电子信号的收集与处理系统在样品室中,扫描电子束与样品发生相互作用后产生多种信号,其中包括二次电子、背散射电子、X射线、吸收电子、俄歇(Auger)电子等。

在上述信号中,最主要的是二次电子,它是被入射电子所激发出来的样品原子中的外层电子,产生于样品表面以下几nm至几十nm的区域,其产生率主要取决于样品的形貌和成分。

通常所说的扫描电镜像指的就是二次电子像,它是研究样品表面形貌的最有用的电子信号。

检测二次电子的检测器(图15(2)的探头是一个闪烁体,当电子打到闪烁体上时,1就在其中产生光,这种光被光导管传送到光电倍增管,光信号即被转变成电流信号,再经前置放大及视频放大,电流信号转变成电压信号,最后被送到显像管的栅极。

3.电子信号的显示与记录系统扫描电镜的图象显示在阴极射线管(显像管)上,并由照相机拍照记录。

显像管有两个,一个用来观察,分辨率较低,是长余辉的管子;另一个用来照相记录,分辨率较高,是短余辉的管子。

4.真空系统及电源系统扫描电镜的真空系统由机械泵与油扩散泵组成,其作用是使镜筒内达到10(4~10(5托的真空度。

电源系统供给各部件所需的特定的电源。

(二) 工作原理从电子枪阴极发出的直径20(m~30(m的电子束,受到阴阳极之间加速电压的作用,射向镜筒,经过聚光镜及物镜的会聚作用,缩小成直径约几毫微米的电子探针。

在物镜上部的扫描线圈的作用下,电子探针在样品表面作光栅状扫描并且激发出多种电子信号。

这些电子信号被相应的检测器检测,经过放大、转换,变成电压信号,最后被送到显像管的栅极上并且调制显像管的亮度。

显像管中的电子束在荧光屏上也作光栅状扫描,并且这种扫描运动与样品表面的电子束的扫描运动严格同步,这样即获得衬度与所接收信号强度相对应的扫描电子像,这种图象反映了样品表面的形貌特征。

第二节扫描电镜生物样品制备技术大多数生物样品都含有水分,而且比较柔软,因此,在进行扫描电镜观察前,要对样品作相应的处理。

扫描电镜样品制备的主要要求是:尽可能使样品的表面结构保存好,没有变形和污染,样品干燥并且有良好导电性能。

一.样品的初步处理(一) 取材取材的基本要求和透射电镜样品制备相同,可参考第十四章超薄切片技术中所提的要求。

但是,对扫描电镜来说,样品可以稍大些,面积可达8mm×8mm,厚度可达5mm。

对于易卷曲的样品如血管、胃肠道粘膜等,可固定在滤纸或卡片纸上,以充分暴露待观察的组织表面。

(二) 样品的清洗用扫描电镜观察的部位常常是样品的表面,即组织的游离面。

由于样品取自活体组织,其表面常有血液、组织液或粘液附着,这会遮盖样品的表面结构,影响观察。

因此,在样品固定之前,要将这些附着物清洗干净。

清洗的方法有以下几种:1.用等渗的生理盐水或缓冲液清洗;2.用5%的苏打水清洗;3.用超声震荡或酶消化的方法进行处理。

例如清洗肠粘膜表面的粘液,可用下面的方法:清洗液配方:透明质酸酶300 (gα—糜蛋白酶10 mg生理盐水100 ml清洗液的pH为5.5~6。

清洗的方法是将样品浸泡在配好的清洗液中,边浸泡边震荡30分钟,最后用双蒸水洗3次。

无论用哪种清洗方法,注意在清洗时不要损伤样品。

(三) 固定固定所用的试剂和透射电镜样品制备相同,常用戊二醛及锇酸双固定。

由于样品体积较大,固定时间应适当延长。

也可用快速冷冻固定。

(四) 脱水样品经漂洗后用逐级增高浓度的酒精或丙酮脱水,然后进入中间液,一般用醋酸异戊酯作中间液。

二.样品的干燥扫描电镜观察样品要求在高真空中进行。

无论是水或脱水溶液,在高真空中都会产生剧烈地汽化,不仅影响真空度、污染样品,还会破坏样品的微细结构。

因此,样品在用电镜观察之前必须进行干燥。

干燥的方法有以下几种:(一) 空气干燥法空气干燥法又称自然干燥法,就是将经过脱水的样品,让其暴露在空气中使脱水剂逐渐挥发干燥。

这种方法的最大优点是简便易行和节省时间;它的主要缺点是在干燥过程中,组织会由于脱水剂挥发时表面张力的作用而产生收缩变形。

因此,该方法一般只适用于表面较为坚硬的样品。

(二) 临界点干燥法临界点干燥法是利用物质在临界状态时,其表面张力等于零的特性,使样品的液体完全汽化,并以气体方式排掉,来达到完全干燥的目的。

这样就可以避免表面张力的影响,较好地保存样品的微细结构。

此法操作较为方便,所用的时间也不算长,一般约2~3小时即可完成,所以是最为常用的干燥方法。

但用此法,需要特殊仪器设备。

临界点干燥是在临界点干燥仪中进行的,操作步骤如下:1.固定、脱水:按常规方法进行。

如样品是用乙醇脱水的,在脱水至100%后,要用纯丙酮置换15~20分钟。

2.转入中间液:由纯丙酮转入中间液醋酸异戊酯中,时间约15~30分钟。

3.移至样品室:将样品从醋酸异戊酯中取出,放入样品盒,然后移至临界点干燥仪的样品室内,盖上盖并拧紧以防漏气。

4.用液体二氧化碳置换醋酸异戊酯:在达到临界状态(31(C , 72.8大气压)后,将温度再升高10(C,使液体二氧化碳气化,然后打开放气阀门,逐渐排出气体,样品即完全干燥。

(三) 冷冻干燥法冷冻干燥法是将经过冷冻的样品置于高真空中,通过升华除去样品中的水分或脱水剂的过程。

冷冻干燥的基础是冰从样品中升华,即水分从固态直接转化为气态,不经过中间的液态,不存在气相和液相之间的表面张力对样品的作用,从而减轻在干燥过程中对样品的损伤。

冷冻干燥法有两种,即含水样品直接冷冻干燥和样品脱水后冷冻干燥。

1.含水样品直接冷冻干燥法1.1 取材固定:按常规方法进行。

1.2 置于冷冻保护剂中:将样品置于冷冻保护剂中浸泡数小时。

常用的冷冻保护剂为10%~20%二甲基亚砜水溶液,或15%~40%甘油水溶液。

1.3 骤冷:将经过保护剂处理的样品迅速投入用液氮预冷至(150(C的氟利昂冷冻剂中,使样品中的水分很快冻结。

1.4 干燥:将已冻结的样品移到冷冻干燥器内已预冷的样品台上,抽真空,经几小时或数天后,样品即达到干燥。

本方法不需要脱水,避免了有机溶剂对样品成分的抽提作用,不会使样品收缩,也是较早使用的方法。

但是,由于花费时间长,消耗液氮多,容易产生冰晶损伤,因此未被广泛应用。

2.样品脱水后冷冻干燥样品用乙醇或丙酮脱水后过渡到某些易挥发的有机溶剂中,然后连同这些溶剂一起冷冻并在真空中升华而达到干燥。

相关主题