第16章 电磁场16.1 一条铜棒长为L = 0.5m ,水平放置,可绕距离A 端为L /5处和棒垂直的轴OO`在水平面内旋转,每秒转动一周.铜棒置于竖直向上的匀强磁场中,如图所示,磁感应强度B = 1.0×10-4T .求铜棒两端A 、B 的电势差,何端电势高. 解:设想一个半径为R 的金属棒绕一端做匀速圆周运动,角速度为ω,经过时间d t 后转过的角度为d θ = ωd t ,扫过的面积为 d S = R 2d θ/2,切割的磁通量为 d Φ = B d S = BR 2d θ/2,动生电动势的大小为 ε = d Φ/d t = ωBR 2/2. 根据右手螺旋法则,圆周上端点的电势高.AO 和BO 段的动生电动势大小分别为22()2550AO B LBL ωωε==,22416()2550BO B L BLωωε==. 由于BO > AO ,所以B 端的电势比A 端更高,A 和B 端的电势差为2310BO AOBL ωεεε=-=242332 1.010(0.5)1010ωπ-⨯⨯⨯==BL = 4.71×10-4(V). [讨论]如果棒上两点到o 的距离分别为L 和l ,则两点间的电势差为222()(2)222B L l Bl B L Ll ωωωε++=-=.16.2 一长直载流导线电流强度为I ,铜棒AB 长为L ,A 端与直导线的距离为x A ,AB 与直导线的夹角为θ,以水平速度v 向右运动.求AB 棒的动生电动势为多少,何端电势高?解:在棒上长为l 处取一线元d l ,在垂直于速度方向上的长度为 d l ⊥ =d l cos θ;线元到直线之间的距离为r = x A + l sin θ, 直线电流在线元处产生的磁感应强度为0022(sin )A I IB r x l μμππθ==+. 由于B ,v 和d l ⊥相互垂直,线元上动生电动势的大小为0cos d d d 2(sin )A Iv lBv l x l μθεπθ⊥==+,棒的动生电动势为cos d 2sin LA Iv lx l μθεπθ=+⎰cos d(sin )2sin sin LA A Iv x l x l μθθπθθ+=+⎰0sin cot ln 2A A Iv x L x μθθπ+=, A 端的电势高.[讨论](1)当θ→π/2时,cot θ = cos θ/sin θ→0,所以ε→0,就是说:当棒不切割磁力线时,棒中不产生电动势. (2)当θ→0时,由于sin sin sin lnln(1)A A A A x L L L x x x θθθ+=+→,所以02AIvLx μεπ→,这就是棒垂直割磁力线时所产生电动势.16.3 如图所示,平行导轨上放置一金属杆AB ,质量为m ,长为L .在导轨上的端接有电阻R .匀强磁场B 垂直导轨平面向里.当AB 杆以初速度v 0向运动时,求: (1)AB 杆能够移动的距离;(2)在移动过程中电阻R 上放出的焦耳热为多少?B A图16.3图16.2[分析]当杆运动时会产生动生电动势,在电路中形成电流;这时杆又变成通电导体,所受的安培力与速度方向相反,所以杆将做减速运动.随着杆的速度变小,动生电动势也会变小,因而电流也会变小,所受的安培力也会变小,所以杆做加速度不断减小的减速运动,最后缓慢地停下来. 解:(1)方法一:速度法.设杆运动时间t 时的速度为v ,则动生电动势为ε = BLv ,电流为 I = ε/R ,所受的安培力的大小为F = ILB = εLB/R = (BL )2v/R ,方向与速度方向相反.取速度的方向为正,根据牛顿第二定律F = ma 得速度的微分方程为2()d d BL v v m R t -=,即:2d ()d v BL t v mR=-积分得方程的通解为21()ln BL v t C mR=-+.根据初始条件,当t = 0时,v = v 0,可得常量C 1 = ln v 0.方程的特解为20()exp[]BL v v t mR=-.由于v = d x /d t ,可得位移的微分方程20()d exp[]d BL x v t t mR=-,方程的通解为20()exp[]d BL x v t t mR =-⎰2022()exp[]()mRv BL t C BL mR -=-+,当t = 0时,x = 0,所以常量为022()mRv C BL =.方程的特解为202(){1exp[]}()mRv BL x t BL mR =--. 当时间t 趋于无穷大时,杆运动的距离为02()mRv x BL =.方法二:冲量法.由F = -(BL )2v/R ,得2()d d BL x F t R-=,右边积分得 0d 0tF t mv =-⎰,即:杆所受的冲量等于杆的动量的变化量.左边积分后,可得02()mv Rx BL =. (2)杆在移动过程中产生的焦耳热元为222()d d d d BLv Q I R t t t R R ε===220()2()exp[]d BLv BL t t R mR=-整个运动过程中产生的焦耳热为2200()2()exp[]d BLv BL Q t t R mR ∞=-⎰222002()exp[]22mv mv BL t mR ∞-=-=, 即:焦耳热是杆的动能转化而来的.16.4 如图所示,质量为m 、长度为L 的金属棒AB 从静止开始沿倾斜的绝缘框架滑下.磁感应强度B 的方向竖直向上(忽略棒AB 与框架之间的摩擦),求棒AB 的动生电动势.若棒AB 沿光滑的金属框架滑下,设金属棒与金属框组成的回路的电阻R 为常量,棒AB 的动生电动势又为多少?解:(1)棒的加速度为 a = g sin θ,经过时间t ,棒的速度为v = at = (g sin θ)t ,而切割磁力线的速度为 v ⊥ = v cos θ,所以棒的动生电动势为ε = BLv ⊥ = BLg (sin θcos θ)t = BLg (sin2θ)t /2. (2)设棒运动时间t 时的速度为v ,则动生电动势为ε = BLv cos θ,电流为I = ε/R ,所受的安培力的大小为F = ILB = εLB/R = (BL )2v cos θ/R ,其方向水平向右.安培力沿着斜面向上的图16.4分量为F` = F cos θ,其方向与速度的方向相反.取速度的方向为正,根据牛顿第二定律ΣF = ma 得速度的微分方程为2(cos )d sin d BL v v mg m R t θθ-=,即 2d d sin (cos )mRt v mgR BL v θθ=-, 方程可化为222d[sin (cos )]d (cos )sin (cos )mR mgR BL v t BL mgR BL vθθθθθ--=-.积分得方程的通解为22ln[sin (cos )](cos )mRt mgR BL v C BL θθθ-=-+. 根据初始条件,当t = 0时,v = 0,可得常量2ln(sin )(cos )mRC mgR BL θθ=, 方程的特解为22[sin (cos )]ln(cos )sin mR mgR BL v t BL mgR θθθθ--=, 棒的速度为22sin (cos ){1exp[]}(cos )mgR BL v t BL mRθθθ=--, 动生电动势为cos BLv εθ=2(cos )tan {1exp[]}mgR BL t BL mRθθ=--.[讨论]当时间t 趋于无穷大时,最终速度为 2sin (cos )mgR v BL θθ=,最终电动势为 t a n m g R BL εθ=,最终电流为 t a n mgI BLθ=.另外,棒最终做匀速运动,重力做功的功率等于感生电流做功的功率,重力做功的功率为 P = mg sin θv ,感生电流做功的功率为222(cos )BLv P I R R Rεθ===, 两式联立也可得2sin (cos )mgR v BL θθ=,由此可以求出最终电动势和电流.[注意]只有当物体做匀速运动时,重力所做的功才等于电流所做的功,否则,重力还有一部分功转换成物体的动能.16.5 电磁涡流制动器是一个电导率为ζ,厚度为t 的圆盘,此盘绕通过其中心的垂直轴旋转,且有一覆盖小面积为a 2的均匀磁场B 垂直于圆盘,小面积离轴r (r >>a ).当圆盘角速度为ω时,试证此圆盘受到一阻碍其转动的磁力矩,其大小近似地表达为M ≈B 2a 2r 2ωζt . 解:电导率是电阻率的倒数ζ = 1/ρ.不妨将圆盘与磁场相对的部分当成长、宽和高分别为a 、a 和t 的小导体,其横截面积为S = at ,电流将从横截面中流过,长度为a ,因此其电阻为1l R S tρσ==. 宽为a 的边扫过磁场中,速度大小为 v = rω,产生的感生电动势为ε = Bav = Bar ω,圆盘其他部分的电阻远小于小导体的电阻,因此通过小导体的电流强度为I = ε/R = Bar ωζt ,所受的安培力为F = IaB = B 2a 2r ωζt ,其方向与速度方向相反.产生的磁力矩为M = Fr = B 2a 2r 2ωζt .其方向与角速度的方向相反.16.6 如图,有一弯成θ角的金属架COD 放在磁场中,磁感应强度B的方向垂直于金属架COD 所在平面,一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v 向右滑动,v 与MN 垂直,设t = 0时,x =0,求下列两情形,框架内的感应电动势εi .O图16.6图16.5 t(1)磁场分布均匀,且B 不随时间改变; (2)非均匀的交变磁场B = Kx cos ωt .解:(1)经过时间t ,导体杆前进的距离为x = vt ,杆的有效长度为l = x tan θ = v (tan θ)t ,动生电动势为εi = Blv = Bv 2(tan θ)t .(2)导体杆扫过的三角形的面积为S = xl /2 = x 2tan θ/2 = v 2t 2tan θ/2,通过该面的磁通量为3tan cos 2kx BS t θΦω== 33tan cos 2kv t t θω=感应电动势为d d i tΦε=-323tan (3cos sin )2kv t t t t θωωω=--, 即: 32tan (sin 3cos )2i kv t t t t θεωωω=-.16.7 如图所示的回路,磁感应强度B 垂直于回路平面向里,磁通量按下述规律变化Φ = 3t 2 + 2t + 1,式中Φ的单位为毫韦伯,t 的单位为秒.求:(1)在t = 2s 时回路中的感生电动势为多少? (2)电阻上的电流方向如何?解:(1)将磁通量的单位化为韦伯得Φ = (3t 2 + 2t + 1)/103,感生电动势大小为ε = |d Φ/d t | = 2(3t + 1)/103.t = 2s 时的感生电动势为1.4×10-2(V).(2)由于原磁场在增加,根据楞次定律,感应电流所产生的磁场的方向与原磁场的方向相反,所以在线圈中感生电流的方向是逆时针的,从电阻的左边流向右边.16.8 如图所示的两个同轴圆形导体线圈,小线圈在大线圈上面.两线圈的距离为x ,设x 远大于圆半径R .大线圈中通有电流I 时,若半径为r 的小线圈中的磁场可看作是均匀的,且以速率v = d x /d t 运动.求x = NR 时,小线圈中的感应电动势为多少?感应电流的方向如何? 解:环电流在轴线上产生的磁感应强度为20223/22()IR B x R μ=+,当x >>R 时,磁感应强度为 2032IR B xμ≈.小线圈的面积为S = πr 2,通过的磁通量为22032IR r BS xπμΦ=≈,当小线圈运动时,感应电动势为22043d d 2IR r vt x πμΦε=-≈, 当x = NR 时,感应电动势为204232Ir vN R πμε≈.感应电流的磁场与原磁场的方向相同,感应电流的方向与原电流的环绕方向相同. 16.9 如图所示,匀强磁场B 与矩形导线回路的法线n 成θ = 60°角,B = kt (k 为大于零的常数).长为L 的导体杆AB 以匀速v 向右平动,求回路中t 时刻的感应电动势的大小和方向(设t = 0时,x = 0). 解:经过时间t ,导体杆运动的距离为x = vt ,扫过的面积为S = Lx = Lvt ,通过此面积的磁通量为 Φ = B ·S = BS cos θ = Lvkt 2/2.感应电动势的大小为ε = d Φ/d t = Lvkt .由于回路中磁通量在增加,而感应电流的磁通量阻碍原磁通量增加,其磁场与原磁场的方向相反,所以感应电图16.7图17.8图16.9动势的方向是顺时针的.16.10 长为b ,宽为a 的矩形线圈ABCD且线圈的长边平行于长直导线,线圈以速度v 向右平动,t 时刻基AD 边距离长直导线为x ;且长直导线中的电流按I = I 0cos ωt 规律随时间变化,如图所示.求回路中的电动势ε.解:电流I 在r 处产生的磁感应强度为02IB r μπ=, 穿过面积元d S = b d r 的磁通量为0d d d 2IbB S r rμΦπ==,穿过矩形线圈ABCD 的磁通量为001d ln()22x a x Ib Ib x ar r xμμΦππ++==⎰, 回路中的电动势为d d t Φε=-0d 11d [ln()()]2d d b x a I xI x t x a x tμπ+=-+-+ 00cos [ln()sin ]2()I b x a av t t x x x a μωωωπ+=++.显然,第一项是由于磁场变化产生的感生电动势,第二项是由于线圈运动产生的动生电动势.16.12 如图所示的圆面积内,匀强磁场B 的方向垂直于圆面积向里,圆半径R = 12cm ,d B /d t = 10-2T·s -1.求图中a 、b 、c 三点的涡旋电场为多少(b 为圆心)?设ab = 10cm ,bc = 15cm . 解:(1)当点在磁场之中时,以b 为圆心,以r 为半径作一圆形环中,其周长为C = 2πr ,面积为 S = πr 2.取环路的逆时针方向为正,根据右手螺旋法则,面积的法向方向垂直纸面向外。