MW超临界汽轮机设备及运行
%
汽封系统运行限制 汽封供汽必须具有不小于14℃的过热度。 盘车之前不得投入汽封供汽系统,以免转子弯
曲。 低压缸汽封供汽温度120~180℃,低压汽封温
度控制器整定值为150℃。 为了防止汽封部位由于热应力而造成转子损坏,
机组在启动和停机时,要尽量减小汽封蒸汽和 转子表面间的温差下,由于热应力而使转子开 始产生裂纹的计算循环次数,由下图的曲线确 定。建议转子循环疲劳能力为10000次。
16
低压缸体积大,轴向温差大。采用三层缸,即一个 外缸和两个内缸,有利于:
•将通流部分设在内缸,使体积较小的内缸承受温度 变化,而外缸及庞大的排汽缸均处于较低温度状态, 减小热变形;
•#2内缸两端布置有排汽导流环,与外缸的锥形端壁 结合,形成排汽扩压通道,充分利用末级叶片排汽 速度,提高汽轮机效率;
防止和消除油膜振荡的方法: 1. 增大比压; 2. 适当提高油温; 3. 增大偏心率; 4. 采用多油楔瓦。
40
轴承结构
径向支持轴承按支承方式可分为固定式和自位式两种; 按轴瓦可分为圆形轴承、椭圆形轴承、多油楔轴承和可倾 瓦轴承等。
一般圆筒形转子主要适用于低速重载转子;三油楔支 持轴承、椭圆形轴承分别适用于较高转速的轻、中和中、 重载转子;可倾瓦支持轴承则适用于高速轻载和重载转子。
9
第二章 汽轮机本体 汽轮机本体包括:
1. 静止部分 汽缸、喷嘴室、隔板、隔板套、静叶栅、汽封、 轴承、轴承座、滑销系统等 2. 转子部分 主轴、叶轮(或转鼓)、动叶栅、联轴器等
10
第一节 大机组结构特点
一、高中压缸采用双 层缸
将一定压力的蒸汽引 入夹层,使蒸汽的总 压差、温差分别由内、 外壁承担。减小单层 汽缸壁厚、法兰厚度, 减小热应力
内缸无法兰螺栓,而采用7只钢套环将上下缸 热套紧箍成一圆筒,仅在进汽部分加四只螺栓 来加强密封。
同时外缸可采用较薄的法兰和细螺栓,减小对 汽机启停的限制。
13
二、高中压分流合缸
优点:
1. 高温区集中在汽缸中部,夜间停机或周末停 机温度衰减慢,启动热应力小,适合两班制 运行;
2. 两端的温度、压力均较低,从而减少了对轴 承和端部汽封的影响,改善了运行条件;
600MW超临界汽轮机 设备及运行
华北电力大学(北京) 汽机教研室 朱萍
1
T 1’ 1
锅
4’
2’
4
3
2
S 0-1 火电厂朗肯循环示意图
1-2 蒸汽在汽轮机中膨胀做功,将热能转换为机械能;
2-3 蒸汽在凝汽器中凝结成水;
3-4 给水在给水泵中升压;
4-1 工质在锅炉中定压加热。(4’-1’+2’-1 为一次 再热式汽轮机在锅炉内的吸热过程)
每个排汽缸上方装有4个薄膜型安全阀,当排汽 压力高于0.137MPa时,安全阀动作排大气,防止由于 冷却水中断等事故引起的排汽温度升高。
排汽缸的下部还设有喷水减温,防止排汽缸超温。 因为在启动过程中,尤其在达到额定转数空负荷运行 时,可能会出现没有足够的蒸汽流量带走低压缸摩擦 鼓风损失,使低压缸超温的情况,但这种情况的运行 时间要限制。
o1
G=F
G
G
一旦出现扰动,则合力变为F’ 其中: F1=G
将F2分解到沿oo1方向及其垂直方向,前者使轴回到原中心 位置,而后者使轴颈绕原中心位置o涡动,经计算其涡动 频率为转速的一半
F2 F’2 o o1 F”2
38
当: n=ncr1 时,可能产生油膜振荡
39
油膜振荡是自激振荡,其特点为:一旦产生,将在很广的 转速范围内继续存在,不能通过提高转速的方法来消除。
热耗率验收(THA)工况:当机组功率(扣除 静态励磁所消耗的功率)为600MW时,除进 汽量以外,最终给水温度为275℃
7
热耗率保证
机 组 THA 工 况 的 保 证 热 耗 率 不 高 于 如 下 值 :
7572kJ/(kW.h)
THA工况条件下的热耗率按下式计算不计入任何正偏
差值) 汽轮发电机组热耗率=
可倾瓦支持轴承是密切尔式的支持轴承,
一般由3—5块或更多能在支点上自由倾斜的 弧形瓦组成。瓦块在工作时可以随着转速或
载荷、轴承温度的不同而自由摆动,使每个
瓦块作用的轴颈的油膜作用力总是通过轴颈
中心,故不易产生轴颈涡动的失稳力,具有较高的稳定性。
41
某厂600MW机组轴承分布为:
轴承号
载荷(kN)
1(高压转子)
23
汽缸膨胀测量实际上是测定前轴承箱相对于死点 (基础)的移动量 高中压胀差探头位于中轴承箱
报警 -4 10.3 停机 -4.7 11.7 低压缸胀差探头位于6#轴承处 报警 -0.76 10.3 停机 -1.52 23.5
24
六.汽阀结构
25
第二节 叶片与叶轮
等截面叶片、扭叶片 喷嘴(静叶):将蒸汽热能转化为动能;
42
2 (高压转子)
57
3 (中压转子)
88
4 (中压转子)
117
5 (低压A转子)
289
6 (低压A转子)
292
7 (低压B转子)
288
8 (低压B转子)
297
9(发电机转子)
376
10(发电机转子)
376
形式 四瓦块可倾瓦
同上 同上 同上 两瓦块可倾瓦 短园瓦 同上 同上 椭圆 同上
42
43
பைடு நூலகம்
44
26
动叶:将蒸汽动能转化为机械功。 围带:高压可减小漏汽,中、低压可调频(自带围带) 拉金:增加刚度,调频
27
28
第三节 汽封与汽封系统 轴端汽封——主轴穿出汽缸处的汽封 隔板汽封 通流部分汽封——叶根、叶顶汽封
隔 板 汽 封
29
30
轴端汽封 “X” 腔室与轴封供汽母管相连 “Y”腔室与轴封抽汽母管相连
(表压)
辅助汽源 0.0261MPa
冷再热 0.0295MPa
溢流 0.033MPa
33
\
在正常运行时,靠高中压缸两端轴封漏汽作为低压缸两端 的轴封供汽,不需另供轴封用汽,这种系统叫做自密封系 统。 一般:15%负荷高压自密封;25%中压、70%全自密封
空 低 负 荷 时
25 负 荷 以 上 时
34
3. 减少了轴承数,可缩短主轴长度。
缺点:
高中压转子合一而变长、变粗,ncr1降低、 汽封漏汽量增大,热耗增大
14
三、低压缸采用多层缸
15
低压缸的刚度是低压缸最为重要的特性,它包括 静刚度、动刚度和汽缸的热变形等。静刚度是指扣与 不扣上盖的情况下载荷与汽缸变形的关系,冷态下抽 真空与变形的关系。动态刚度是指抗振强度。热变形 是指后汽缸排汽温度变化对汽缸及轴承座负荷分配的 影响。
5
汽轮机进汽量等于铭牌工况(TRL)进汽量,能在下列 条件下安全连续运行,此工况下发电机输出的功率 (扣除静态励磁所消耗的功率),称为最大连续功 率(T—MCR),此工况出力为648.862MW,其条件 如下:
1)额定主蒸汽再热蒸汽参数及所规定的汽水品质 2)汽轮机低压缸排汽平均背压为4.9kPa 3)补给水量为0% 4)最终给水温度为280.7℃ 5)全部回热系统正常运行,但不带厂用辅助蒸汽 6)汽动给水泵满足规定给水参数 7)发电机效率98.9%,额定功率因数0.90,额定氢压。
18
(二)台板支撑 低压缸一般采用下缸伸出的撑脚直接支撑在基础台板 上,虽然它的支撑面比汽缸中分面低,但因排汽缸温 度低,膨胀小,故影响不大。轴向两端预埋入基础的 固定板确定了低压缸的轴向位置
19
在两轴向定位板连线上,汽缸不允许轴向位移
轴向定位板连线和横向定位板连线的交点,既是低压 缸的膨胀死点
4
机组工况的定义
铭牌工况(TRL),进汽量为铭牌进汽量,此工况为出 力保证值的验收工况,其条件如下:
1) 额定主蒸汽参数、再热蒸汽参数及规定的汽水品质; 2) 汽轮机低压缸排汽平均背压为11.8kPa 3)补给水量为3% 4)最终给水温度为280.8℃ 5)全部回热系统正常运行,但不带厂用辅助蒸汽 6)汽动给水泵满足额定给水参数 7)发电机效率98.9%,额定功率因数0.90,额定氢压
2
N600-24.2/566/566汽机简介 超临界、单轴、一次中间再热 三缸四排汽
3
高压缸:1个单列调节级+9个压力反动级 中压缸:6个压力反动级 低压缸:4×7个压力反动级 给水回热系统:3高加+1除氧+4低加 末级叶片长度:1029mm 保证净热耗率:7572kJ/kW.h 设计背压: 双背压4.4/5.4 kPa , 平均背压4.9 给水温度(TRL工况):280.8 ℃ 2 × 50%容量的汽动给水泵+35%容量的启动及备用 电动给水泵
45
三、推力轴承
46
以止推轴承的名义间隙0.4为标准 以轴承架中心线为基准,离开中心线(任一方
向) 0.9mm时报警 1.0mm时跳闸
Wt(HtHf )Wr(Hr) kJ / kw h kWg kWi
式中:
Wt 主蒸汽流量kg/h Wr 再热蒸汽流量kg/h Ht 主汽门入口主蒸汽焓kJ/kg △Hr 经再热器的蒸汽焓差kJ/kg Hf 最终给水焓kJ/kg kWg 发电机终端输出功率kW
kWi 采用静态励磁时所消耗的功率
8
汽轮机能承受下列可能出现的运行工况: a) 汽轮机轴系,能承受发电机及母线突然发 生两相或三相短路或线路单相短路快速重合闸 或非同期合闸时所产生的扭矩 b) 机组甩去外部负荷后带厂用电运行时间不 超过1分钟 c) 汽轮机并网前能在额定转速下空转运行, 其允许持续运行的时间,能满足汽轮机启动后 进行发电机试验的需要 d) 汽轮机能在低压缸排汽温度不高于80℃下 长期运行。当超过限制值时,应投入喷水系统 使温度降到允许的范围内