当前位置:
文档之家› 北京化工大学仪器分析仪器分析总结幻灯片
北京化工大学仪器分析仪器分析总结幻灯片
紫外光谱中常用的术语
红移—λmax向长波方向移动
蓝移— 向短波方向移动 增色效应—吸收强度即摩尔吸光
系数 ,ε增大的现象
减色效应—吸收强度即摩尔吸光 系数, ε减小的现象
引入取代基或改变溶剂
紫外光谱中常用的术语
生色团 —— 含有 键不饱和官能团 助色团 —— 基团本身无色,但能增强生色团颜色
为含有n电子,且能与电子作用,产 生n 共轭 (向长波方向移动)
4. 苯及其衍生物
苯有三个吸收带,它们都是由*跃迁引起 的。E1带出现在180 nm(MAX = 60,000); E2带 出现在204 nm( MAX = 8000 );B带出现在255 nm (MAX = 200)。在气态或非极性溶剂中,苯 及其许多同系物的B谱带有许多的精细结构,这是 由于振动跃迁在基态电子上的跃迁上的叠加而引起 的。在极性溶剂中,这些精细结构消失,当苯环上有 取代基时,苯的三个特征谱带都会发生显著的变化, 其中影响较大的是E2带和B谱带。
北京化工大学仪器分析仪器分 析总结幻灯片
二、紫外可见吸收光谱
吸收光谱的波长分布是由产生谱带的跃迁能级间 的能量差所决定,反映了分子内部能级分布状况, 是物质定性分析的依据。 同一种物质对不同波长光的吸光度不同。吸光度
最大处对应的波长称为最大吸收波长λmax
不同浓度的同一种物质,其吸收曲线形状相似
λmax不变。而对于不同物质,它们的吸收曲线 形状和λmax则不同。
• 若饱和烃中的氢原子被氧、氮、卤素等原子或基团所取代, 由于这些原子中含有n电子,可以发生n * 跃迁
•摩尔吸光系数比较小,一般在100-3000 L / mol cm
化合物
max
max
H2O
167
CH3OH
184
CH3Cl
173
(CH3)2O
184
1480 150 200 2520
* 和 n * 跃迁
苯 184 ( *)
204 254
/nm
270
苯酚
(—OH为助色团)
有机化合物紫外-可见吸收光谱
1. 饱和烃及其取代衍生物
饱和烃类分子中只含有键,只能产生*跃迁。 饱和烃的最大吸收峰一般小于150 nm,超出紫外、可 见分光光度计的测量范围。
饱和烃的取代衍生物如卤代烃,其卤素原子上存 在n电子,可产生n* 的跃迁。 n* 的能量低于 *。例如,CH3Cl、CH3Br和CH3I的n* 跃迁 分别出现在173、204和258nm处。氯、溴和碘原子 引入甲烷后,其相应的吸收波长发生了红移,显示了 助色团的助色作用。
当外层电子吸收紫外或可见辐射后,就从基态向激发态(反键
轨道)跃迁。主要有四种跃迁,所需能量ΔΕ大小顺序为:
n→π* < π→π* < n→σ* < σ→σ*
*跃迁
• 能量很大
• 吸收光谱在真空紫外区
• 多为饱和烃
甲烷
125 nm
乙烷
135 nm)
溶剂对紫外吸收光谱的影响
1. 溶剂的极性
溶剂的极性越强,由π→π*跃迁产生的谱带向长 波方向移动越显著。这是因为发生π→π*跃迁的分
子激发态的极性总大于基态,在极性溶剂的作用下 ,激发态能量降低的程度大于基态,从而使基态到 激发态跃迁所需的能量变小,使吸收带发生红移。
所用溶剂极性越强,则由n→π*跃迁产生的谱带 向短波方向移动越明显,即蓝移越大。发生n→π*
羧酸及羧酸的衍生物虽然也有n*吸收带,但 是, 羧酸及羧酸的衍生物的羰基上的碳原子直接连 结含有未共用电子对的助色团,如-OH、-Cl、-OR 等,由于助色团上的n电子与羰基双键的电子产生 n共轭,导致*轨道的能级有所提高,使n* 跃迁所需的能量变大,n*吸收带蓝移至210nm 左右。
有机化合物紫外-可见吸收光谱
跃迁的分子都含有未成键的孤对电子,与极性溶剂 形成氢键,使得分子的非键轨道能量有较大程度的
降低,使n→π*跃迁所需的能量相应增大,致使吸
收谱带发生蓝移。
朗伯—比尔定律 比耳(Beer) — 1852年
光的吸收程度和吸收物浓度之间的关系
A∝ c
光的吸收定律
A=lg(I0/It)= εb c
A=lg(I0/It)= a b c
在不饱和烃类分子中,当有两个以上的双键共 轭时,随着共轭系统的延长, *跃迁的吸收带 将明显向长波方向移动,吸收强度也随之增强。在 共轭体系中, *跃迁产生的吸收带又称为K带。
有机化合物紫外-可见吸收光谱
3. 羰基化合物
羰基化合物含有C=O基团。 C=O基团主要 可产生*、 n* 、n*三个吸收带, n* 吸收带又称R带,落于近紫外或紫外光区。醛、酮、 羧酸及羧酸的衍生物,如酯、酰胺等。
A:吸光度 --- 溶液对光的吸收程度 b:液层厚度(光程长度,cm) c:溶液的摩尔浓度,mol·L-1 ε:摩尔吸光系数,L·mol-1·cm- 1;
浓度为1 mol/L、液层厚度为1cm 时该溶液在某一波长下的吸光度
c:溶液的浓度,g · L-1
a:吸光系数,L · g-1 · cm
-1
浓度为1 g/L、液层厚度为1cm时 该溶液在某一波长下的吸光度
直接用烷烃和卤代烃的紫外吸收光谱分析这些化合 物的实用价值不大。但是它们是测定紫外和(或)可 见吸收光谱的良好溶剂。
有机化合物紫外-可见吸收光谱
2. 不饱和烃及共轭烯烃
在不饱和烃类分子中,除含有键外,还含有 键,它们可以产生*和*两种跃迁。 * 跃迁的能量小于 *跃迁。例如,在乙烯分子中, *跃迁最大吸收波长为180nm
• * 和 n * 跃迁能量低(>200 nm)
• 含有不饱和键的有机分子易发生这类跃迁
C=C; C=C ; N=N ; C=O
• 有机化合物的紫外-可见吸收光谱分析多以这两 类跃迁为基础
• * 比 n * 跃迁几率大 100-1000 倍 • *跃迁吸收强, ~ 104 • n * 跃迁吸收弱, 500
吸收谱带的强度与该物质分子吸收的光子数成正 比,是物质定量分析的依据。
有机化合物的紫外—可见吸收光谱
分子中外层价电子跃迁的结果(三种):形成单键
的σ电子、形成双键的π电子、未成键的n电子
分子轨道理论:一个成键轨道必 定有一个相应的反键轨道。通常 外层电子均处于分子轨道的基态 ,即成键轨道或非键轨道上。