当前位置:文档之家› 流体动力润滑

流体动力润滑

流体润滑的基本原理

流体动力润滑
流体润滑研究和发展
机器在运动时,运动的零部件之间必定会发生摩擦从而造成磨损,而润滑是减小摩擦、减轻甚至避免磨损的直接措施。

人类进入工业社会以后,润滑已逐渐发展成为一门重要的技术,井已成为工业部门和学术机构重要的研究领域。

19世纪未流体润滑现象被首次发现,几乎同时流体润滑理论也被提出来了。

二战期间军事装备的需求促使润滑技术高速发展,也对润滑理论,持别是流体润滑理论提出了更高的要求。

战后各工业国立即投入大量人力物力,开展有关方面的研究。

现在比较成熟的流体润滑原理主要包括三个方面内容,它们是:1.流体动力润滑
2.流体静压润滑
3.弹性流体动力润滑
流体动力润滑原理
1.1:定义
流体动力润滑是利用流体的黏附性,使流体黏附在摩擦表面,并在摩擦副做相对运动时被带入两摩擦副的摩擦表面之间。

如果两摩擦副的表面形成收敛的楔形空间,则被带入摩擦副的两摩擦表面中的流体就会形成一定的压力,这种压力会随着摩擦副的运动速度和流体的粘度发生改变。

当流体的粘度一定时,摩擦副的运动速率越大,则流体形成的压力就越大;当摩擦副的运动速率一定时,流体的粘度越大,则流体形成的压力就越大。

进入摩擦表面的流体会像一个楔子,由于摩擦副在不断的做相对运动,所以会产生一定的压力,迫使流体向楔子一样楔入两摩擦表面,从而将两摩擦表面分隔开来,阻止两摩擦表面直接接触。

简单地说,流体动力润滑是利用相对运动的摩擦表面间的相对速度、流体的粘滞行和摩擦副之间的楔形墙体,迫使流体压缩而产生压力膜将两表面完全分隔开,并依靠流体产生的压力来平衡外载荷。

两个作相对运动物体的摩擦表面,用借助于相对速度和流体的粘滞性而产生的粘性流体膜将两摩擦表面完全隔开,由流体膜产生的压力来平衡外载荷,称为流体动力润滑。

所用的粘性流体可以是液体(如润滑油)也可以是气体(如空气等),相应地称为液体动力润滑和气体动力润滑。

流体动力润滑是依靠表面运动而产生的动力学效应。

这种动力学效应所表现的最重要的形式就是润滑膜压力的升高,所以,这种润滑常被称为流体动压润滑。

润滑膜压力升高,就意味着它具有高承载能力。

从定义中我们可以看出流体动力润滑必须具备以下几个要素:
A:摩擦副的运动速度。

动压润滑必须是摩擦副做相对运动,运动速率越大,动压就越大。

B:粘性流体。

动压的形成及大小与摩擦副的相对运动速率、流体的黏度有关。

C:两摩擦副的表面形成收敛的楔形空间。

上三个要素被称为流体动力润滑的三要素。

也是形成流体动力润滑的必要条件
1.2流体动力润滑机理
正如流体润滑定义中所述一样,流体动力润滑必要条件之一就是摩擦副的相对运动,没有运动,就谈不上动力润滑。

但是这种运动并非相对运动,因为流体膜中产生压力的根本原因是流体的粘滞性和在两摩擦面之间通道的粘附作用,这两者提供了运动表面对流体的裹狭效
应。

只要运动表面将流体裹狭到截面积减小的通道中,它就对流体膜压力的升高有贡献。

若流体膜的两个表面按相同的方向将润滑剂往更狭窄的通道裹狭,则将产生更高的压力,即使两表面的相对速度是零。

形成流体动力润滑(即形成动力油膜)的必要条件是:
相对运动的两表面间必须形成收敛的楔形间隙。

被流体膜分开的两表面必须有一定的相对滑动速度,运动方向为使流体从大口流进,小口流出。

流体必须有一定的粘度,供油要充分。

1.3流体动压润滑主要有如下两个特性:
流体动力润滑是依靠表面运动而产生的动力学效应。

这种动力学效应所表现的最重要的形式就是润滑膜压力的升高,所以,这种润滑常被称为动压润滑。

润滑膜压力升高,就意味着它具有承载能力。

没有运动,就谈不上动力润滑。

但是,这种运动并非相对运动,因为润滑膜中产生压力的根本原因是润滑剂的粘性和在轴承通道表面的粘附作用,这两者提供了运动表面对润滑剂的裹狭效应。

只要运动表面将润滑剂裹狭到截面积减小的通道中,它就对润滑膜压力的升高有贡献。

若润滑膜的两个表面按相同的方向将润滑剂往更狭窄的通道裹狭,则将产生更高的压力,即使两表面的相对速度是零。

流体动压润滑主要有如下两个特性:
(1)运动阻力主要来自流体的“内摩擦”;
(2) 实现条件:1)两滑动表面沿运动方向的间隙是由大至小的形状
2)相对速度v足够大,楔形空间中有足够的流体,使流体形成足够的承载压力,从而将两个表面隔开,降低摩擦与磨损。

相关主题