当前位置:文档之家› 专题:平面向量常见题型与解题指导

专题:平面向量常见题型与解题指导

平面向量常见题型与解题指导一、考点回顾1、本章框图2、高考要求1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。

2、掌握向量的加法和减法的运算法则及运算律。

3、掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件。

4、了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。

5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。

6、掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。

7、掌握正、余弦定理,并能初步运用它们解斜三角形。

8、通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。

3、热点分析对本章内容的考查主要分以下三类:1.以选择、填空题型考查本章的基本概念和性质.此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题.2.以解答题考查圆锥曲线中的典型问题.此类题综合性比较强,难度大,以解析几何中的常规题为主.3.向量在空间中的应用(在B类教材中).在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质.在复习过程中,抓住源于课本,高于课本的指导方针.本章考题大多数是课本的变式题,即源于课本.因此,掌握双基、精通课本是本章关键.分析近几年来的高考试题,有关平面向量部分突出考查了向量的基本运算。

对于和解析几何相关的线段的定比分点和平移等交叉内容,作为学习解析几何的基本工具,在相关内容中会进行考查。

本章的另一部分是解斜三角形,它是考查的重点。

总而言之,平面向量这一章的学习应立足基础,强化运算,重视应用。

考查的重点是基础知识和基本技能。

4、复习建议由于本章知识分向量与解斜三角形两部分,所以应用本章知识解决的问题也分为两类:一类是根据向量的概念、定理、法则、公式对向量进行运算,并能运用向量知识解决平面几何中的一些计算和证明问题;另一类是运用正、余弦定理正确地解斜三角形,并能应用解斜三角形知识解决测量不可到达的两点间的距离问题。

在解决关于向量问题时,一是要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,进一步加深对“向量”这一二维性的量的本质的认识,并体会用向量处理问题的优越性。

二是向量的坐标运算体现了数与形互相转化和密切结合的思想,所以要通过向量法和坐标法的运用,进一步体会数形结合思想在解决数学问题上的作用。

在解决解斜三角形问题时,一方面要体会向量方法在解三角形方面的应用,另一方面要体会解斜三角形是重要的测量手段,通过学习提高解决实际问题的能力。

二、常见题型分类题型一:向量的有关概念与运算此类题经常出现在选择题与填空题中,在复习中要充分理解平面向量的相关概念,熟练掌握向量的坐标运算、数量积运算,掌握两向量共线、垂直的充要条件.例1:已知a 是以点A (3,-1)为起点,且与向量b = (-3,4)平行的单位向量,则向量a 的终点坐标是 .思路分析:与a 平行的单位向量e =±||a方法一:设向量a 的终点坐标是(x ,y ),则a =(x -3,y +1),则题意可知⎪⎪⎩⎪⎪⎨⎧-==⎪⎪⎩⎪⎪⎨⎧-==⎩⎨⎧=+=++-55185512101334229y x 1y x 13)()(或 解得)+()-(y x y x ,故填 (512,-51)或(518,-59) 方法二 与向量b = (-3,4)平行的单位向量是±51(-3,4),故可得a =±(-53,54),从而向量a 的终点坐标是(x ,y )= a -(3,-1),便可得结果.点评:向量的概念较多,且容易混淆,在学习中要分清、理解各概念的实质,注意区分共线向量、平行向量、同向向量、反向向量、单位向量等概念.例2:已知| a |=1,| b |=1,a 与b 的夹角为60°, x =2a -b ,y =3b -a ,则x 与y 的夹角的余弦是多少思路分析:要计算x 与y 的夹角θ,需求出|x |,|y |,x ·y 的值.计算时要注意计算的准确性. 解:由已知|a |=|b |=1,a 与b 的夹角α为60°,得a ·b =|a ||b |cosα=21. 要计算x 与y 的夹角θ,需求出|x |,|y |,x ·y 的值. ∵|x |2=x 2=(2a -b )2=4a 2-4a ·b +b 2=4-4×21+1=3, |y |2=y 2=(3b -a )2=9b 2-6b ·a +a 2=9-6×21+1=7. x ·y =(2a -b )·(3b -a )=6a ·b -2a 2-3b 2+a ·b=7a ·b -2a 2-3b 2=7×21-2-3=-23, 又∵x ·y =|x ||y |cosθ,即-23=3×7cosθ, ∴cosθ=-1421点评:①本题利用模的性质|a |2=a 2,②在计算x ,y 的模时,还可以借助向量加法、减法的几何意义获得:如图所示,设AB =b , AC =a , AD =2a ,∠BAC =60°.由向量减法的几何意义,得BD =AD -AB =2a -b .由余弦定理易得|BD |=3,即|x |=3,同理可得|y |=7.题型二:向量共线与垂直条件的考查例1.平面直角坐标系中,O 为坐标原点,已知两点A(3, 1),B(-1, 3), 若点C 满足OC OA OB =α+β,其中α,β∈R 且α+β=1,求点C 的轨迹方程。

.解:(法一)设C (x ,y ),则=(x ,y ),由=(x ,y )= α(3,1)+ β(-1,3)=(3α-β, α+3β)∴⎩⎨⎧+=-=βαβα33y x , (可从中解出α、β)又∵α+β=1 消去α、β得x +2y -5=0(法二) 利用向量的几何运算,考虑定比分点公式的向量形式,结合条件知:A ,B ,C 三点共线,故点C 的轨迹方程即为直线AB 的方程x +2y -5=0,例2.已知平面向量a =(3,-1),b =(21,23).(1) 若存在实数k 和t ,便得x =a +(t 2-3)b , y =-k a +t b ,且x ⊥y ,试求函数的关系式k =f(t);(2) 根据(1)的结论,确定k =f(t)的单调区间.思路分析:①欲求函数关系式k=f(t),只需找到k 与t 之间的等量关系,k 与t 之间的等量关系怎么得到②求函数单调区间有哪些方法(导数法、定义法)导数法是求单调区间的简捷有效的方法解:(1)法一:由题意知x =(23322--t ,223232--t ),y =(21t -3k ,23t +k),又x ⊥y故x · y =23322--t ×(21t -3k )+223232--t ×(23t +k)=0.整理得:t 3-3t -4k =0,即k =41t 3-43t. 法二:∵a =(3,-1),b =(21, 23), ∴. a =2,b =1且a ⊥b∵x ⊥y ,∴x · y =0,即-k a 2+t(t 2-3)b 2=0,∴t 3-3t -4k =0,即k =41t 3-43t (2) 由(1)知:k =f(t) =41t 3-43t ∴k ˊ=f ˊ(t) =43t 3-43, 令k ˊ<0得-1<t <1;令k ˊ>0得t <-1或t >1.故k =f(t)的单调递减区间是(-1, 1 ),单调递增区间是(-∞,-1)和(1,+∞).点评: 第(1)问中两种解法是解决向量垂直的两种常见的方法:一是先利用向量的坐标运算分别求得两个向量的坐标,再利用向量垂直的充要条件;二是直接利用向量垂直的充要条件,其过程要用到向量的数量积公式及求模公式,达到同样的求解目的(但运算过程大大简化,值得注意).第(2)问中求函数的极值运用的是求导的方法,这是新旧知识交汇点处的综合运用.例3: 已知平面向量a=(3,-1),b=(21,23),若存在不为零的实数k 和角α,使向量c =a +(sin α-3)b , d=-k a+(sin α)b,且c⊥d,试求实数k 的取值范围.解:由条件可得:k =41( sin α-23)2-169,而-1≤sin α≤1, ∴当sin α=-1时,k 取最大值1; sin α=1时,k 取最小值-21. 又∵k ≠0 ∴k 的取值范围为 1[,0)(0,1]2-.点拨与提示:将例题中的t 略加改动,旧题新掘,出现了意想不到的效果,很好地考查了向量与三角函数、不等式综合运用能力.例4:已知向量)1,2(),2,1(-==,若正数k 和t 使得向量tk t 1)1(2+-=++=与垂直,求k 的最小值.解:0)1(])1([02=+-•++=⋅⇔⊥tk t 即0)1(112222=⋅+-⋅+++-⇔b a t k b a tb t t a k∵)1,2(),2,1(-==,∴||=3,||=3⋅=-2+2 , 代入上式 -3k +32112≥+=+tt t t 当且仅当t=t1,即t=1时,取“=”号,即k 的最小值是2. 题型三:向量的坐标运算与三角函数的考查向量与三角函数结合,题目新颖而又精巧,既符合在知识的“交汇处”构题,又加强了对双基的考查. 例7.设函数f (x )=a · b ,其中向量a =(2cos x , 1), b =(cos x ,3sin2x ), x ∈R.(1)若f(x )=1-3且x ∈[-3π,3π],求x ;(2)若函数y =2sin2x 的图象按向量c =(m , n) (m ﹤2π)平移后得到函数y =f(x )的图象,求实数m 、n 的值.思路分析:本题主要考查平面向量的概念和计算、平移公式以及三角函数的恒等变换等基本技能,解: (1)依题设,f(x )=(2cos x ,1)·(cos x ,3sin2x )=2cos 2x +3sin2x =1+2sin(2x +6π) 由1+2sin(2x +6π)=1-3,得sin(2x +6π)=-23.∵-3π≤x ≤3π , ∴-2π≤2x +6π≤65π, ∴2x +6π=-3π, 即x =-4π.(2)函数y =2sin2x 的图象按向量c =(m , n )平移后得到函数y =2sin2(x -m)+n 的图象,即函数y =f(x )的图象.由(1)得f (x )=1)12(2sin 2++πx ∵m <2π, ∴m =-12π,n =1.点评: ①把函数的图像按向量平移,可以看成是C 上任一点按向量平移,由这些点平移后的对应点所组成的图象是Cˊ,明确了以上点的平移与整体图象平移间的这种关系,也就找到了此问题的解题途径.②一般地,函数y=f (x)的图象按向量a=(h , k)平移后的函数解析式为y-k=f(x-h)、例8:已知a=(cosα,sinα),b=(cosβ,sinβ)(0<α<β<π),(1)求证:a+b与a-b互相垂直;(2)若k a+b与a-k b的模大小相等(k∈R且k≠0),求β-α解:(1)证法一:∵a=(cosα,sinα),b=(c osβ,sinβ)∴a+b=(cosα+cosβ,sinα+ sinβ), a-b=(cosα-cosβ,sinα- sinβ)∴(a+b)·(a-b)=(cosα+cosβ,sinα+ sinβ)·(cosα-cosβ,sinα- sinβ)=cos2α-cos2β+sin2α- sin2β=0∴(a+b)⊥(a-b)证法二:∵a=(cosα,sinα),b=(cosβ,sinβ)∴|a|=1,|b|=1∴(a+b)·(a-b)=a2-b2=|a|2-|b|2=0 ∴(a+b)⊥(a-b)证法三:∵a=(cosα,sinα),b=(cosβ,sinβ)∴|a|=1,|b|=1,记=a,=b,则||=||=1,又α≠β,∴O、A、B三点不共线.由向量加、减法的几何意义,可知以OA、OB为邻边的平行四边形OACB是菱形,其中=a+b,=a-b,由菱形对角线互相垂直,知(a+b)⊥(a-b)(2)解:由已知得|k a+b|与|a-k b|,又∵|k a+b|2=(kcosα+cosβ)2+(ksinα+sinβ)2=k2+1+2kcos(β-α),|k a+b|2=(cosα-kcosβ)2+(sinα-ksinβ)2=k2+1-2kcos(β-α),∴2kcos(β-α)= -2kcos(β-α)又∵k≠0 ∴cos(β-α)=0π∵0<α<β<π∴0<β-α<π, ∴β-α=2注:本题是以平面向量的知识为平台,考查了三角函数的有关运算,同时也体现了向量垂直问题的多种证明方法,常用的方法有三种,一是根据数量积的定义证明,二是利用数量积的坐标运算来证明,三是利用向量运算的几何意义来证明.题型四:向量运算的几何意义与解析几何由于向量既能体现“形”的直观位置特征,又具有“数”的良好运算性质,是数形结合与转换的桥梁和纽带,文科应重视由向量运算的几何意义求圆的方程和椭圆方程。

相关主题