课程设计报告( 2018 -- 2019 年度第 1 学期)名称:题目:院系:班级:学号:学生姓名:指导教师:设计周数:成绩:日期:2018年月日目录设计任务 (3)一、概述 (3)1.1环氧乙烷 (3)1.1.1环氧乙烷物理性质 (4)1.1.2环氧乙烷化学性质 (4)1.2制备方法 (6)(1)氯醇法 (6)(2)氧化法 (6)1.3工艺技术展望与前景 (7)二、设计方案简介 (8)2.1反应工艺选择 (8)2.2反应条件 (8)2.2.1 反应温度 (9)2.2.2 反应压力 (9)2.2.3 空速 (9)2.3催化剂的选择 (9)2.4环氧乙烷生产的工艺流程 (9)三、设计条件 (11)3.1反应器条件 (12)3.2 反应原理 (12)3.3 物料衡算 (12)3.4 热量衡算 (15)参考文献 (17)设计任务设计年产1000吨环氧乙烷生产工艺,实际工作天数300天。
单程转化率、副产物比例、分离过程损失等根据文献合理假设。
一、概述1.1环氧乙烷环氧乙烷(epoxyethane)又称为氧化乙烯,是一种有机化合物,烃的含氧衍生物,是一种有毒的致癌物质,常温常压下为无色易燃气体,低温时为无色易流动液体。
环氧乙烷是乙烯衍生物中非常重要的有机化工原料,全球约60%的环氧乙烷用于生产聚酯纤维、树脂以及防冻剂用单体乙二醇,13%的环氧乙烷用于生产其它多元醇和生产洗涤剂乙氧基化合物、乙醇胺、乙二醇醚、熏蒸剂和药物的消毒剂等。
环氧乙烷易燃易爆,不易长途运输,因此有强烈的地域性。
环氧乙烷被广泛地应用于洗涤,制药,印染等行业,以前被用来制造杀菌剂,在化工相关产业可作为清洁剂的起始剂。
环氧乙烷(EO)为一种最简单的环醚,属于杂环类化合物,是重要的石化产品。
环氧乙烷在低温下为无色透明液体,在常温下为无色带有醚刺激性气味的气体,气体的蒸汽压高,30℃时可达141kPa,这种高蒸汽压决定了环氧乙烷熏蒸消毒时穿透力较强。
环氧乙烷是继甲醛之后出现的第2代化学消毒剂,至今仍为最好的冷消毒剂之一,也是目前四大低温灭菌技术(低温等离子体、低温甲醛蒸汽、环氧乙烷、戊二醛)最重要的一员。
EO是一种简单的环氧化合物,为非特异性烷基化合物,结构式为:-CH2-CH2-O-,分子量为44.06。
1.1.1环氧乙烷物理性质常温下环氧乙烷为无色、具有甜醚味的气体。
在较低的温度下环氧乙烷成为无色、透明、易流动的液体。
易溶于水、醚和醇等有机溶剂,沸点为283.5K,熔点161.7K,燃点702K,自燃点844K,爆炸范围为3.6%-78%(体积分数),在空气中允许浓度为150mg/kg,粘度在10℃时为0.28mpa.s,热导率在25℃时0.0001239J/(cm.s.k),在标准状况下比热容为1.96KJ/kg.K。
相对密度为0.8711(水=1),折射率为1.3614(4℃),相对蒸气密度(空气=1)为1.52,分子量为44.052,饱和蒸气压为145.91(kPa)(20℃),燃烧热为1262.8(kJ/mol),临界温度为195.8℃,临界压力7.19MPa,自燃点571℃,与水可以任何比例混溶,能溶于醇、醚。
1.1.2环氧乙烷化学性质环氧乙烷的化学性质非常活泼,能与很多化合物进行反应,其反应主要是环氧乙烷开环与其它化合物进行加成反应,放出大量反应热,有的反应进行得非常剧烈,甚至产生爆炸。
(1)分解反应气体环氧乙烷在约400℃时开始分解,主要生成CO、CH4以及C2H6、C2H4、H2、C、CH3CHO等(2)加成反应环氧乙烷与含有活泼氢原子的化合物,生产含-OH的化合物①与水反应环氧乙烷与水反应生成乙二醇,这是工业上生产乙二醇的方法。
OH OHCH CH O H O H C 22242→+该反应为放热反应,热效应为96.3kJ/mol 。
反应过程不采用催化剂。
②与醇类反应环氧乙烷与醇反应生成醚,其反应的最终产品是至少含一个羟基的醚。
H O CH CH X O H nC OH CH XCH n 1224222)((+→+环氧乙烷)③与苯酚反应环氧乙烷与苯酚反应生成苯氧基乙醇。
OH CH OCH H C OH H C O H C 22565642→+(3)氧化还原反应在钠汞齐及催化剂存在下环氧乙烷加氢还原生成乙醇,此反应没有工业意义。
环氧乙烷在铂黑等催化剂存下可以有控制地氧化成羟基乙酸,最终则被氧化成二氧化碳及水。
(4)异构化反应环氧乙烷在三氧化二铝、磷酸、磷酸盐等催化剂存在下可异构化为乙醛。
CHO CH O H C 342→在一定的条件下银催化剂也有此功能,这是乙烯氧化制环氧乙烷过程的副反应之一,要极力避免,因为醛的存在增加了环氧乙烷提存净化的难度。
(5)与双键进行加成反应环氧乙烷和以下一些含双键的化合物可进行加成反应生成环状化合物,例如R 2C=O 、SC=S 、O 2S=O 、RN=CO 、OS=O 等。
(6)与格利雅试剂反应环氧乙烷与格利雅试剂反应可生成比原来烷基多两个碳原子的醇,这是实验室制备加长碳链醇的一种办法,羟基在链的端部。
(7)齐聚反应环氧乙烷进行齐聚反应可生成冠醚,催化剂为含氟的路易斯酸。
反应在室温、常压下进行。
(8)与二甲醚反应在BF3作用下环氧乙烷与二甲醚反应生成聚乙二醇二甲醚。
该反应在工业上用来生产低分子量的均聚物,其产品广泛用作溶剂。
1.2制备方法(1)氯醇法分两步反应,第一步是将乙烯和氯气通入水中,生成2-氯乙醇。
第二步是用碱(通常为石灰乳)与2-氯乙醇反应,生成环氧乙烷。
乙烯经次氯酸化生成氯乙醇,然后与氢氧化钙皂化生成环氧乙烷粗产品,再经分馏,制得环氧乙烷。
反应式和工艺流程如下。
_1(2)氧化法可分为空气法和氧气法两种。
前者以空气为氧化剂,因此必须有空气净化装置,以防止空气中有害杂质带入反应器而影响催化剂的活性。
通常以低转化率进行操作,保持在20~50%范围内;后者用浓度大于95%(体积)的氧气作为氧化剂,氧气法不需要空气净化系统,而需要空气分离装置或有其它氧源。
由于用纯氧作氧化剂,连续引入系统的惰性气体大为减少,未反应的乙烯基本上可完全循环使用。
从吸收塔顶出来的气体必须经过脱碳以除去二氧化碳,然后循环返回反应器,不然二氧化碳浓度超过15%(mol%),将严重影响催化剂的活性。
氧化法的工业生产流程分为反应、环氧乙烷回收及环氧乙烷精制三个部分。
1.3工艺技术展望与前景1.3.1催化剂改进乙烯直接氧化法生产环氧乙烷的工业催化剂为银催化剂,其性能评估指标主要有活性、选择性、寿命及稳定性等项内容。
目前有三类银催化剂用于环氧乙烷的生产: 一是高选择性银催化剂,这类催化剂最高选择性达到 88~91% ,但要求反应气中 CO2浓度在 1.0% 以下,适用于时空产率相对较低的环氧乙烷生产装置; 二是中等选择性银催化剂,这类催化剂最高选择性约为 85~87%,一般要求反应气中 CO2浓度在 3%甚至 1% 以下; 三是高活性银催化剂,这类催化剂用于负荷较高、CO2浓度较高的早期建成的生产装置,初始选择性80~82%,使用寿命在2~4年。
1.3.2生产技术改进尽管环氧乙烷生产工艺相对比较成熟,但是在进一步提高产品产量和质量,降低物耗和能耗及安全操作等方面仍在不断进步。
(1)新型含氯抑制剂应用技术在银催化剂上生成EO的反应异常剧烈,为了抑制乙烯过度氧化成二氧化碳和水,通常在反应器进料中加入抑制剂。
以前Shell等公司的专利均采用二氯乙烷作为抑制剂,尔后多家公司采用一氯乙烷作为抑制剂。
采用一氯乙烷具有加入量较大,易于控制,毒性较小,在系统内形成氯化物杂质较少,对设备腐蚀性小等优点,而且添加工艺更为简单,不需要泵或载气加以输送。
目前我国有一些EO装置就选用一氯乙烷作抑制剂,获得了较好的经济效益。
(2)回收乙烯技术尾气中乙烯的回收是降低原料单耗的重要手段。
SD公司提出利用半渗透膜从循环气体中选择抽出氩气,然后把分出氩气后的富乙烯气体循环回反应器,减少乙烯损失。
三菱化学公司提出设置三台吸附塔,选用特定的分子筛形碳作为吸附剂,加压吸附排放气体中的乙烯,然后使用真空泵减压解吸,解吸的乙烯经升压返回原料循环气管线。
(3)防止反应气异构化为了降低EO反应器底封头和管道内温度,从而避免在这些部位达到点火温度的危险性,减少可能由于催化剂粉末的存在而发生EO异构化为乙醛的反应,日本触媒公司所报道的专利中,采用来自气-液分离槽的冷却水在预热和反应区的循环的方法,防止反应气的异构化反应。
(4)反应器大型化和新型化EO反应器大型化,是其生产技术的一个重要发展方向。
由于EO生产产生大量热量,而且传统反应器存在能耗高、收率低等缺点。
日本触媒公司新近开发并投入使用的EO反应器是配置有冷却罐的多管反应器,可以使反应得到的EO气迅速冷却,减少杂质生成。
(5)催化剂装填技术惰性球对醛的生成具有促进作用,Shell公司为此提出了新的催化剂装填技术,即在催化剂的顶部用催化剂代替惰性球。
该技术还具有压力降易调节、催化剂装填所用时间短、废旧催化剂回收无需分离等优点。
(6)生物法生产环氧乙烷受原油价格影响,乙烯生产成本大幅度增加,从而为生物法生产环氧乙烷提供了发展机遇。
目前,以乙醇为原料生产环氧乙烷技术已比较成熟,该法以乙醇为原料,经脱水生产乙烯,进而生产环氧乙烷。
二、设计方案简介2.1反应工艺选择环氧乙烷的生产方法主要有氧化法氧化法和氯醇法2种,氯醇法由于技术落后,在国内外早已被淘汰。
目前世界上环氧乙烷工业化生产装置几乎全部采用以银为催化剂的乙烯直接氧化法。
2.2反应条件环氧乙烷的生产受反应温度、反应压力、空间速度与空管线速度、原料配比和循环比、抑制剂等工艺条件的制约。
2.2.1 反应温度温度直接影响化学反应速度,在工业生产中,应根据反应过程的具体情况,采取相应措施,当反应温度高时,一是转化率增加,这意味着乙烯氧化的总速率提高,二是生产环氧乙烷的选择性降低,即更多的乙烯转化成二氧化碳和水,因此,这时反应热量的急骤增加,不是使更多的乙烯被氧化,而是使反应过程的选择性降低,副反应增加是更重要的原因。
此外,在催化剂使用初期,其活性较高,宜采用较低的操作温度。
2.2.2 反应压力乙烯直接氧化反应过程,主反应是体积减少的反应,副反应(深度氧化)是体积不变的反应。
因此,采用加压操作有利。
2.2.3 空速空间速度简称空速,所谓空速是指单位时间内,通过单位体积催化剂的反应物的体积数量。
通常用每小时每升(或m3)催化剂通过的原料气的升(或m3)数来表示。
对于乙烯直接氧化过程,实践证明,提高空速,转化率会略有下降,而选择性将有所上升,在一定范围内提高空速可提高设备的生产能力。
2.3催化剂的选择氧化法生产环氧乙烷的关键是催化剂的选择。