应用动力学和能量观点解决电磁感应中的“导轨+杆”模型问题1.模型概述“导轨+杆”模型是电磁感应问题在高考命题中的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“导轨+杆”模型又分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,情景复杂,形式多变.2.常见模型类型“电—动—电”型“动—电—动”型示意图已知量棒ab长L,质量m,电阻R;导轨光滑水平,电阻不计棒ab长L,质量m,电阻R;导轨光滑,电阻不计过程分析S闭合,棒ab受安培力F=BLER,此时加速度a=BLEmR,棒ab速度v↑→感应电动势E′=BLv↑→电流I↓→安培力F=BIL↓→加速度a↓,当安培力F=0时,a=0,v最大,最后匀速运动棒ab释放后下滑,此时加速度a=gsin α,棒ab速度v↑→感应电动势E=BLv↑→电流I=ER↑→安培力F=BIL↑→加速度a↓,当安培力F=mgsin α时,a=0,v最大,最后匀速运动能量转化通过安培力做功,把电能转化为动能克服安培力做功,把重力势能转化为内能运动形式变加速运动变加速运动最终状态匀速运动,vm=E′BL匀速运动vm=mgRsin αB2L2一、单棒问题1、发电式(1)电路特点:导体棒相当于电源,当速度为v时,电动势E=Blv(2)安培力特点:安培力为阻力,并随速度增大而增大(3)加速度特点:加速度随速度增大而减小(4)运动特点:加速度减小的加速运动(5)最终状态:匀速直线运动(6)两个极值F①v=0时,有最大加速度:②a=0时,有最大速度:(7)能量关系(8)动量关系(9)变形:摩擦力;改变电路;改变磁场方向;改变轨道解题步骤:解决此类问题首先要建立“动→电→动”的思维顺序,可概括总结为:(1)找”电源”,用法拉第电磁感应定律和楞次定律求解电动势的大小和方向;(2)画出等效电路图,求解回路中的电流的大小及方向;(3)分析安培力对导体棒运动速度、加速度的动态过程,最后确定导体棒的最终运动情况;(4)列出牛顿第二定律或平衡方程求解.(一)导轨竖直1、如图所示,足够长的光滑平行金属导轨MN、PQ竖直放置,其宽度L=1 m,一匀强磁场垂直穿过导轨平面,导轨的上端M与P之间连接阻值为R=0.40 Ω的电阻,质量为m=0.01 kg、电阻为r=0.30 Ω的金属棒ab紧贴在导轨上.现使金属棒ab由静止开始下滑,下滑过程中ab始终保持水平,且与导轨接触良好,其下滑距离x与时间t的关系如图乙所示,图象中的OA段为曲线,AB段为直线,导轨电阻不计,g=10 m/s2(忽略ab棒运动过程中对原磁场的影响),求:甲乙(1)磁感应强度B的大小;(2)金属棒ab在开始运动的1.5 s内,通过电阻R的电荷量;(3)金属棒ab在开始运动的1.5 s内,电阻R上产生的热量.答案(1)0.1 T(2)0.67 C(3)0.26 J解析(1)金属棒在AB段匀速运动,由题中图象乙得:v=ΔxΔt=7 m/s I=BLvr+R,mg=BIL 解得B=0.1 TNM22-+=()()mF mg R rvB lμ212E mFs Q mgS mvμ=++mFt BLq mgt mvμ--=-F B F(2)q =I Δt I =ΔΦR +r Δt ΔΦ=ΔSΔtB 解得:q =0.67 C(3)Q =mgx -12mv2 解得Q =0.455 J 从而QR =Rr +R Q =0.26 J2、 如图所示,竖直放置的两根足够长平行金属导轨相距L ,导轨间接有一定值电阻R ,质量为m ,电阻为r 的金属棒与两导轨始终保持垂直并良好接触,且无摩擦,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,现将金属棒由静止释放,金属棒下落高度为h 时开始做匀速运动,在此过程中( )A .导体棒的最大速度为2ghB .通过电阻R 的电荷量为BLhR +rC .导体棒克服安培力做的功等于电阻R 上产生的热量D .重力和安培力对导体棒做功的代数和等于导体棒动能的增加量 答案 BD3、如图2所示,电阻为R ,其他电阻均可忽略,ef 是一电阻可不计的水平放置的导体棒,质量为m ,棒的两端分别与ab 、cd 保 持良好接触,又能沿框架无摩擦下滑,整个装置放在与框架垂直的 匀强磁场中,当导体棒ef 从静止下滑一段时间后闭合开关S ,则S 闭合后 ( ) A .导体棒ef 的加速度可能大于g B .导体棒ef 的加速度一定小于gC .导体棒ef 最终速度随S 闭合时刻的不同而不同D .导体棒ef 的机械能与回路内产生的电能之和一定守恒4、MN 和PQ 为竖直方向的两平行长直金属导轨,间距l 为0.40m ,电阻不计.导轨所在平面与磁感应强度B 为0.50T 的匀强磁场垂直.质量m 为6.0×10-3kg 、电阻为1.0Ω的金属杆ab 始终垂直于导轨,并与其保持光滑接触.导轨两端分别接有滑动变阻器和阻值为3.0Ω的电阻R 1.当杆ab 达到稳定状态时以速率υ匀速下滑,整个电路消耗的电功率P 为0.27W ,重力加速度取10m/s 2,试求速率υ和滑动变阻器接入电路部分的阻值R 2.5、如图,两根足够长的金属导轨ab 、cd 竖直放置,导轨间距离为L 1电阻不计。
在导轨上端并接两个额定功率均为P 、电阻均为R 的小灯泡。
整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直。
现将一质量为m 、电阻可以忽略的金属棒MN 从图示位置由静止开始释放。
金属棒下落过程中保持水平,且与导轨接触良好。
已知某时刻后两灯泡保持正常发光。
重力加速度为g 。
求: (1)磁感应强度的大小:(2)灯泡正常发光时导体棒的运动速率。
解析:每个灯上的额定电流为PI R=额定电压为:P U R = (1)最后MN 匀速运动故:B2IL=mg 求出:2mg PRB PL=(2)U=BLv 得:2PR Pv BL mg==(二)导轨水平3. 如图3所示,两根平行金属导轨固定在同一水平面内,间距为l ,导轨左端连接一个电阻.一根质量为m 、电阻为r 的金属杆ab 垂直放置在导轨上.在杆的右方距杆为d 处有一个匀强磁场,磁场方向垂直于轨道平面向下,磁感应强度为B.对杆施加一个大小为F 、方向平行于导轨的恒力,使杆从静止开始运动,已知杆到达磁场区域时速度为v ,之后进入磁场恰好做匀速运动.不计导轨的电阻,假定导轨与杆之间存在恒定的阻力.求: (1)导轨对杆ab 的阻力大小Ff. (2)杆ab 中通过的电流及其方向.(3)导轨左端所接电阻的阻值R.答案 (1)F -mv22d (2)mv22Bld ,方向由a 流向b (3)2B2l2dmv -r解析 (1)杆ab 进入磁场前做匀加速运动,有 F -Ff =ma v2=2ad解得导轨对杆的阻力Ff =F -mv22d(2)杆ab 进入磁场后做匀速运动,有 F =Ff +F 安杆ab 所受的安培力F 安=IBl解得杆ab 中通过的电流I =mv22Bld由右手定则判断杆中的电流方向自a 流向b (3)杆运动过程中产生的感应电动势E =Blv杆中的感应电流I =ER +r解得导轨左端所接电阻阻值R =2B2l2dmv -r13.如图 ,二相互平行的光滑金属导轨位于水平面内,间距,在导轨的一端接有阻值为的电阻;在区域有一与水平面垂直的均匀磁场;一质量为的金属杆垂直放置在导轨上并以的初速度进入磁场中,在安培力及垂直于杆的水平外力F共同作用下做匀变速直线运动,加速度大小为方向与初速度方向相反;设导轨及金属杆的电阻均不计且接触良好求:(1)电流为0时金属杆所处的位置?(2)电流为最大值的一半时施加在金属杆上外力F的大小及方向?(3)保持其它条件不变而初速度取不同值,则开始时外力F的方向与初速度取值的关系?解析:由题意知杆必向右作匀减速直线运动到速度为0后再向左作匀加速直线运动直到离开磁场区域,故电流为0时表示杆的速度为0;杆向右匀减速直线运动的位移为得;杆的运动速度变化时电路中的电动势变化,故电流相应变化,由电动势有杆运动的速度最大则电路中感应电动势最大、电流最大,即最大电流必为;当电流为最大值的一半时即时:①若此时杆向右运动,则外力方向不定,我们假设外力F水平向右由牛顿定律有即,故杆向右运动中外力F大小为0.18N方向水平向左;②若此时杆向左运动,则外力F方向必水平向左且有即代入数据得。
(3)杆开始运动时速度为,则电动势为,故安培力为;那么对杆由牛顿定律有即:当即时,表示外力F方向与X轴方向相反;当即时,表示外力F方向与X轴方向相同.【例2】如图所示,质量m1=0.1kg,电阻R1=0.3Ω,长度l=0.4m的导体棒ab横放在U型金属框架上。
框架质量m2=0.2kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2,相距0.4m的MM’、NN’相互平行,电阻不计且足够长。
电阻R2=0.1Ω的MN垂直于MM’。
整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5T。
垂直于ab施加F=2N 的水平恒力,ab从静止开始无摩擦地运动,始终与MM’、NN’保持良好接触,当ab运动到某处时,框架开始运动。
设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10m/s2.(1)求框架开始运动时ab速度v的大小;(2)从ab开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1J,求该过程ab位移x的大小。
【解析】:(1)ab对框架的压力11F m g=①框架受水平面的支持力21NF m g F=+②依题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力2NF Fμ=③ab中的感应电动势E Blv=④MN中电流12EIR R=+⑤MN受到的安培力F IlB=安⑥框架开始运动时2F F=安⑦由上述各式代入数据解得6/v m s=⑧(2)闭合回路中产生的总热量122R RQ QR+=总⑨由能量守恒定律,得2112Fx m v Q=+总⑩代入数据解得 1.1x m=○11【例3】如图7-9甲所示,一对平行光滑轨道放置在水平面上,两轨道间距L=0.20m,电阻R=1.0Ω,有一导体杆静止放在轨道上,与两轨道垂直,杆及轨道的电阻可忽略不计,整个装置处于磁感强度B=0.50T的匀强磁场中,磁场方向垂直轨道面向下,现用一外力F沿轨道方向拉杆,使之做匀加速运动,测得力F与时间t的关系如图7-9乙所示,求杆的质量m和加速度a.(1)如图所示。
(4分)(2)对杆应用牛顿定律,得(2分)(1分)(1分)(1分)由以上各式得: (3分) 分别把t1=0、F1=2N及t1=10s、F1=3N代入上式解得 m=0.2kg (1分)、a=10m/s2 (1分)【答案】m=0.1kg, a=10m/s216.(13分)如图所示,两根正对的平行金属直轨道MN 、M ´N ´位于同一水平面上,两轨道之间的距离l=0.50m .轨道的MM ´端之间接一阻值R=0.40Ω的定值电阻,NN ´端与两条位于竖直面内的半圆形光滑金属轨道NP 、N ´P ´平滑连接,两半圆轨道的半径均为R 0=0.50m .直轨道的右端处于竖直向下、磁感应强度B=0.64 T 的匀强磁场中,磁场区域的宽度d=0.80m ,且其右边界与NN ´重合.现有一质量m =0.20kg 、电阻r =0.10Ω的导体杆ab 静止在距磁场的左边界s=2.0m 处.在与杆垂直的水平恒力F=2.0N 的作用下ab 杆开始运动,当运动至磁场的左边界时撤去F ,结果导体杆ab 恰好能以最小速度通过半圆形轨道的最高点PP ´.已知导体杆ab 在运动过程中与轨道接触良好,且始终与轨道垂直,导体杆ab 与直轨道之间的动摩擦因数μ=0.10,轨道的电阻可忽略不计,取g =10m/s 2,求:⑴导体杆刚进入磁场时,通过导体杆上的电流大小和方向; ⑵导体杆穿过磁场的过程中通过电阻R 上的电荷量; ⑶导体杆穿过磁场的过程中整个电路中产生的焦耳热.9.(本题特点:B 变S 不变)如图所示,导轨是水平的,其间距l 1=0.5m ,ab 杆与导轨左端的距离l 2=0.8m ,由导轨与ab 杆所构成的回路电阻为0.2Ω,方向垂直导轨平面向下的匀强磁场的磁感应强度B 0=1T ,滑轮下挂一个重物M 质量为0.04kg ,ab 杆与导轨之间的摩擦不计,现使磁场以s T tB/2.0=∆∆的变化率均匀的增大, 问:当t 为多少时,M 刚离开地面。