当前位置:文档之家› 线粒体与过氧化物酶体

线粒体与过氧化物酶体

1. 线粒体(mi tochondri on)线粒体是1850年发现的,1898年命名。

线粒体由两层膜包被,外膜平滑,内膜向内折叠形成嵴,两层膜之间有腔,线粒体中央是基质。

基质内含有与三羧酸循环所需的全部酶类,内膜上具有呼吸链酶系及ATP酶复合体。

线粒体是细胞内氧化磷酸化和形成ATP的主要场所,有细胞"动力工厂"(power plant)之称。

另外,线粒体有自身的DNA和遗传体系, 但线粒体基因组的基因数量有限,因此,线粒体只是一种半自主性的细胞器。

线粒体的形状多种多样, 一般呈线状,也有粒状或短线状。

线粒体的直径一般在0.5~1.0 μm, 在长度上变化很大, 一般为1.5~3μm, 长的可达10μm ,人的成纤维细胞的线粒体则更长,可达40μm。

不同组织在不同条件下有时会出现体积异常膨大的线粒体, 称为巨型线粒体(megamitochondria)在多数细胞中,线粒体均匀分布在整个细胞质中,但在某些些细胞中,线粒体的分布是不均一的,有时线粒体聚集在细胞质的边缘。

在细胞质中,线粒体常常集中在代谢活跃的区域,因为这些区域需要较多的ATP,如肌细胞的肌纤维中有很多线粒体。

另外, 在精细胞、鞭毛、纤毛和肾小管细胞的基部都是线粒体分布较多的地方。

线粒体除了较多分布在需要ATP的区域外,也较为集中的分布在有较多氧化反应底物的区域,如脂肪滴,因为脂肪滴中有许多要被氧化的脂肪。

2. 外膜(o ute r membrane)包围在线粒体外面的一层单位膜结构。

厚6nm, 平整光滑, 上面有较大的孔蛋白, 可允许相对分子质量在5kDa左右的分子通过。

外膜上还有一些合成脂的酶以及将脂转变成可进一步在基质中代谢的酶。

外膜的标志酶是单胺氧化酶。

3. 内膜(inner memb rane)位于外膜内层的一层单位膜结构, 厚约6nm。

内膜对物质的通透性很低, 只有不带电的小分子物质才能通过。

内膜向内折褶形成许多嵴, 大大增加了内膜的表面积。

内膜含有三类功能性蛋白:①呼吸链中进行氧化反应的酶; ②ATP合成酶复合物; ③一些特殊的运输蛋白, 调节基质中代谢代谢物的输出和输入。

内膜的标志酶是细胞色素氧化酶。

4. 线粒体膜间隙(in ter memb rane space)线粒体内膜和外膜之间的间隙, 约6~8nm, 其中充满无定形的液体, 含有可溶性的酶、底物和辅助因子。

膜间隙的标志酶是腺苷酸激酶。

5. 线粒体基质( ma tr ix)内膜和嵴包围着的线粒体内部空间, 含有很多蛋白质和脂类,催化三羧酸循环中脂肪酸和丙酮酸氧化的酶类, 也都存在于基质中。

此外, 还含有线粒体DNA、线粒体核糖体、tRNAs、rRNAs以及线粒体基因表达的各种酶。

基质中的标志酶是苹果酸脱氢酶。

6. 嵴(c ris tae)线粒体内膜向基质折褶形成的结构称作嵴(cristae), 嵴的形成使内膜的表面积大大增加。

嵴有两种排列方式:一是片状(lamellar), 另一是管状(tubular)。

在高等动物细胞中主要是片状的排列, 多数垂直于线粒体长轴。

在原生动物和植物中常见的是管状排列。

线粒体嵴的数目、形态和排列在不同种类的细胞中差别很大。

一般说需能多的细胞,不仅线粒体多,而且线粒体嵴的数目也多。

线粒体内膜的嵴上有许多排列规则的颗粒称为线粒体基粒(elementary particle),每个基粒间相距约10 nm。

基粒又称偶联因子1(coupling factor 1),简称F1,实际是ATP合酶(ATP synthase),又叫F0 F1 ATP 酶复合体, 是一个多组分的复合物。

7. 蛋白质寻靶(pro te in targe ti ng)游离核糖体合成的蛋白质在细胞内的定位是由前体蛋白本身具有的引导信号决定的。

不同类型的引导信号可以引导蛋白质定位到特定的细胞器,如线粒体、叶绿体、细胞核和过氧化物酶体等。

这些蛋白质在游离核糖体上合成释放之后需要自己寻找目的地,因此称为蛋白质寻靶。

8. 翻译后转运(pos t-trans lationa l t ransloca ti on)游离核糖体上合成的蛋白质必须等蛋白质完全合成并释放到胞质溶胶后才能被转运,所以将这种转运方式称为翻译后转运。

通过这种方式转运的蛋白质包括线粒体、叶绿体和细胞核的部分蛋白,以及过氧化物酶体的全部蛋白等。

在游离核糖体上合成的蛋白质中有相当一部分直接存在于胞质溶胶中, 包括细胞骨架蛋白、各种反应体系的酶或蛋白等。

9. 蛋白质分选(pro te in so rt ing)主要是指膜结合核糖体上合成的蛋白质, 通过信号肽,在翻译的同时进入内质网, 然后经过各种加工和修饰,使不同去向的蛋白质带上不同的标记, 最后经过高尔基体反面网络进行分选,包装到不同类型的小泡,并运送到目的地, 包括内质网、高尔基体、溶酶体、细胞质膜、细胞外和核膜等。

广义的蛋白质分选也包括在游离核糖体上合成的蛋白质的定位。

10. 共翻译转运(co-trans lat ional tra nsloca tion)膜结合核糖体上合成的蛋白质, 在它们进行翻译的同时就开始了转运,主要是通过定位信号,一边翻译,一边进入内质网, 然后再进行进一步的加工和转移。

由于这种转运定位是在蛋白质翻译的同时进行的,故称为共翻译转运。

在膜结合核糖体上合成的蛋白质通过信号肽,经过连续的膜系统转运分选才能到达最终的目的地,这一过程又称为蛋白质分选,或蛋白质运输(protein trafficking)。

11. 游离核糖体(free r iboso mes)在蛋白质合成的全过程中, 结合有mRNA的核糖体都是游离存在的(实际上是与细胞骨架结合在一起的),不与内质网结合。

这种核糖体之所以不与内质网结合, 是因为被合成的蛋白质中没有特定的信号,与核糖体无关。

12. 膜结合核糖体(memb rane-bound r ibosomes)结合有mRNA并进行蛋白质合成的核糖体在合成蛋白质的初始阶段处于游离状态,但是随着肽链的合成,核糖体被引导到内质网上与内质网结合在一起,这种核糖体称为膜结合核糖体。

这种核糖体与内质网的结合是由合成的新生肽N端的信号序列决定的,而与核糖体自身无关。

13. 导肽(leadi ng pep ti de)又称转运肽(transit peptide)或导向序列(targeting sequence),它是游离核糖体上合成的蛋白质的N-端信号。

导肽是新生蛋白N-端一段大约20~80个氨基酸的肽链, 通常带正电荷的碱性氨基酸(特别是精氨酸和赖氨酸)含量较为丰富, 如果它们被不带电荷的氨基酸取代就不起引导作用,说明这些氨基酸对于蛋白质的定位具有重要作用。

这些氨基酸分散于不带电荷的氨基酸序列之间。

转运肽序列中不含有或基本不含有带负电荷的酸性氨基酸,并且有形成两性α螺旋的倾向。

转运肽的这种特征性的结构有利于穿过线粒体的双层膜。

不同的转运肽之间没有同源性,说明导肽的序列与识别的特异性有关,而与二级或高级结构无太大关系。

导肽运送蛋白质时具有以下特点:①需要受体; ②消耗ATP; ③需要分子伴侣; ④要电化学梯度驱动; ⑤要信号肽酶切除信号肽; ⑥通过接触点进入;⑦非折叠形式运输。

14. 氧化(oxida tion)葡萄糖(或糖原)在正常有氧的条件下, 经氧化产生CO2和水,这个总过程称作糖的有氧氧化,又称细胞氧化或生物氧化。

整个过程分为三个阶段: ①糖氧化成丙酮酸。

葡萄糖进入细胞后经过一系列酶的催化反应,最后生成丙酮酸的过程,此过程在细胞质中进行, 并且是不耗能的过程;②丙酮酸进入线粒体, 在基质中脱羧生成乙酰CoA; ③乙酰CoA进入三羧酸循环, 彻底氧化。

15. 糖酵解(g lycolys is)葡萄糖在无氧条件下, 生成丙酮酸的过程。

此过程在细胞质中进行, 并且是不耗氧的过程。

16..三羧酸循环(cit ric aci d cycle)由乙酰CoA和草酰乙酸缩合成有三个羧基的柠檬酸, 柠檬酸经一系列反应, 一再氧化脱羧, 经α酮戊二酸、琥珀酸, 再降解成草酰乙酸。

而参与这一循环的丙酮酸的三个碳原子, 每循环一次, 仅用去一分子乙酰基中的二碳单位, 最后生成两分子的CO2 , 并释放出大量的能量。

17. 电子载体(e lect ron ca rr iers)在电子传递过程中与释放的电子结合并将电子传递下去的物质称为电子载体。

参与传递的电子载体有四种∶黄素蛋白、细胞色素、铁硫蛋白和辅酶Q,在这四类电子载体中,除了辅酶Q以外,接受和提供电子的氧化还原中心都是与蛋白相连的辅基。

18. 黄素蛋白(flavop ro teins)黄素蛋白是由一条多肽结合1个辅基组成的酶类,结合的辅基可以是FAD或FMN,它们是维生素B2的衍生物,每个辅基能够接受和提供两个质子和电子。

线粒体中的黄素蛋白主要是电子传递链中NADH脱氢酶和TCA 循环中的琥珀酸脱氢酶。

19. 细胞色素(cy tochromes)细胞色素是含有血红素辅基的一类蛋白质。

血红素基团是由卟啉环结合一个铁原子(铁原子位于环的中央)构成的。

与NAD+和FAD不同, 在氧化还原过程中,血红素基团的铁原子可以传递单个的电子而不必成对传递。

血红素中的铁通过Fe3+和Fe2+两种状态的变化传递电子。

在还原反应时,铁原子由Fe3+状态转变成Fe2+状态;在氧化反应中,铁由Fe2+转变成Fe3+。

电子传递链中至少有五种类型的细胞色素∶a、a3、b、c和c1,它们间的差异在于血红素基团中取代基和蛋白质氨基酸序列的不同。

20. 铁硫蛋白(iron-sul fu r pro tei ns, Fe/S protein)铁硫蛋白是含铁的蛋白质,也是细胞色素类蛋白。

在铁硫蛋白分子的中央结合的不是血红素而是铁和硫,称为铁-硫中心(iron-sulfur centers)。

最常见的是在蛋白质的中央含有四个原子,其中两个是铁,另两个是硫,称为[2Fe-2S],或在蛋白质的中央含有八个原子,其中四个是铁,另四个是硫,称为[4Fe-4S],并且通过硫与蛋白质的半胱氨酸残基相连。

在铁硫蛋白中尽管有多个铁原子的存在,但整个复合物一次只能接受一个电子以及传递一个电子,并且也是靠Fe3+ Fe2+状态的循环变化传递电子。

21. 醌(uniqu inone UQ)或辅酶Q(coenzy me Q)辅酶Q是一种脂溶性的分子,含有长长的疏水链,由五碳类戊二醇构成。

如同黄素蛋白,每一个醌能够接受和提供两个电子和质子,部分还原的称为半醌,完全还原的称为全醌(UQH2)。

22. 氧还电位(ox idation-reduct ion p oten tia ls, redox po ten tia ls)由于不同的还原剂具有不同的电子传递电位,而氧化与还原又是偶联的,如NAD+和NADH.它们的差别主要是电子数量不同,所以二者间就有一个电位差, 即氧还电位。

相关主题