无穷级数同步测试一、单项选择题1.下列结论中,错误的是( )()A 若lim 0→∞≠n n u ,则级数21∞=∑n n u 发散.()B 若级数1∞=∑n n u 绝对收敛,则21∞=∑n n u 收敛.()C 若级数1∞=∑n n u 收敛,则21∞=∑n n u 收敛.()D 若级数21∞=∑n n u 收敛,则lim 0→∞=n n u 收敛.2.已知幂级数1(1)∞=−∑nn n a x 在0=x 处收敛,在2=x 处发散,则该级数的收敛域( )()[0,2)()(0,2]()(0,2)()[0,2]A B C D3.已知幂级数1∞=∑nn n a x 的收敛半径1=R ,则幂级数0!∞=∑n n n a x n 的收敛域为( )()(1,1)()[1,1)()(1,1]()(,)−−−−∞+∞A B C D4. 设常数0>x ,则级数11(1)sin ∞−=−∑n n x n ( ). ()A 发散 ()B 条件收敛 ()C 绝对收敛 ()D 收敛性与x 有关二、填空题5. 级数11()2∞=∑nn n 的和为 .6.2!lim(!)→∞=n n n .7.已知级数22116π∞==∑n n ,则级数211(1)∞=−=∑n n n .8.幂级数2101!∞+=∑n n x n 的和函数()=S x . 三、解答题9.判断下列运算过程是否正确,若不正确,指出错误所在,并给出正确解法.级数∞=n n .又由于0=n,但=n u 不是单调递减的,由此得出该级数不满足莱布尼茨定理的第二个条件,故级数发散.10.讨论级数21(0)(1)(1)(1)∞=≥+++∑nn n x x x x x 的敛散性.11.求级数11(21)2∞=+∑nn n n 的和. 12.将2()ln(3)=−f x x x 展开为1−x 的幂级数. 13.求极限2313521lim()2222→∞−++++nn n . 14.验证函数3693()1()3!6!9!(3)!=++++++−∞<<+∞n x x x x y x x n 满足微分方程()()()'''++=xy x y x y x e ,并求幂级数30(3)!∞=∑nn x n 的和函数.第九章 多元函数微分法及其应用同步测试B 答案及解析一、单项选择题答案详细解析1. 解 利用级数的性质.若lim 0→∞≠n n u ,则2lim 0→∞≠nn u ,因此级数21∞=∑n n u 发散, ()A 正确;若1∞=∑n n u 绝对收敛,即1∞=∑n n u 收敛,则lim 0→∞=n n u ,2lim lim 01→∞→∞==<nn n n nu u u根据正项级数的比较审敛法知21∞=∑n n u 收敛,()B 正确;若级数21∞=∑n n u 收敛,则2lim 0lim 0→∞→∞=⇒=nn n n u u ,()D 正确; 故选()C .事实上,令(1)=−nn u ,则1∞=∑n n u 收敛,但2111∞∞===∑∑n n n u n发散. 『方法技巧』 本题考查级数收敛的必要条件及正项级数的比较审敛法. 『特别提醒』 比较审敛法只限于正项级数使用.2.解 由于幂级数1(1)∞=−∑n n n a x 在0=x 处收敛,则该级数在以1为中心,以0和1之间的距离1为半径的开区间11−<x ,即02<<x 内,级数绝对收敛.又级数在2=x 处发散,则在以1为中心,以1和2之间的距离1为半径的区间外11−>x ,即0<x 或2>x 内,级数发散.因此级数的收敛区间(不含端点)为(0,2),则收敛域为[0,2),故选()A .『方法技巧』 本题考查幂级数的阿贝尔定理.『特别提醒』 阿贝尔定理经常出现在各类考试的选择题或填空题中,要求大家熟练掌握它.3. 解 由于1∞=∑n n n a x 的收敛半径1=R ,则有1lim1→∞+=nn n a a . 幂级数0!∞=∑nn n a x n 的收敛半径为 11!lim lim (1)(1)!→∞→∞++'==+=+∞+nn n n n n a an R n a a n ,因此收敛域为(,)−∞+∞,故选()D .『方法技巧』 本题考查幂级数的收敛半径和收敛域. 由于级数是标准的幂级数,直接代入公式即可求出收敛半径=+∞R .4. 解 由于存在充分大的n ,有,sin 02π<>x xn n,所以从某时刻开始,级数1(1)sin ∞−=−∑k k nxk 是交错级数,且满足 sin sin ,limsin 01→∞≤=+k x x x k k k ,即满足莱布尼茨定理的条件,所以此交错级数收敛,而前有限项(1−n 项)不影响级数的敛散性,因此原级数11(1)sin ∞−=−∑n n xn 收敛.又由于sinlim 01→∞=>n xn x n,因此级数111(1)sin sin ∞∞−==−=∑∑n n n x x n n 发散,所以原级数11(1)sin ∞−=−∑n n xn 条件收敛,故选()B .『方法技巧』 本题考查正项项级数的比较审敛法及绝对收敛、条件收敛的概念和级数的性质.『特别提醒』 解题中需要说明,此级数可能不是从第一项就是交错级数,从某项以后为交错级数,而前有限项不影响级数的敛散性. 二、填空题 5. 2 6. 0 7. 212π− 8. 2x xe答案详细解析5. 解 考查幂级数1∞=∑n n nx ,其收敛域为(1,1)−.由111∞∞−===∑∑nn n n nx x nx,令11()∞−==∑n n f x nx ,则111()1∞∞−=====−∑∑⎰⎰xxn n n n x f x dx nx dx x x因此21()()1(1)'==−−x f x x x ,故21()(1)∞===−∑nn x nx xf x x ,所以 2111112()()21222(1)2∞====−∑n n n f 『方法技巧』 本题考查幂级数的收敛域及和函数.求常数项级数的和经常转化为讨论幂级数的和函数在确定点的值.『特别提醒』 在幂级数求和时,经常使用逐项积分和逐项求导的方法,将其转化为熟悉的幂级数(如等比级数),注意级数的第一项(0=n 或1=n ).6. 解 考虑级数21!(!)∞=∑n n n ,由比值审敛法 212(1)!(!)1lim lim lim 01![(1)!]1+→∞→∞→∞+===<++n n n n nu n n u n n n 因此级数21!(!)∞=∑n n n 收敛,由收敛级数的必要条件得2!lim 0(!)→∞=n n n . 『方法技巧』 本题考查利用收敛级数的必要条件求极限.这是求数列极限的一种方法,有些数列变形十分复杂,可考虑将其作为级数的一般项讨论.7. 解 由题设 222211111236π∞==+++=∑n n,则2222222111111111(2)42464624ππ∞∞====++=⨯=∑∑n n n n 22222222111111111(21)35(2)6248πππ∞∞∞====+++=−=−=−∑∑∑n n n n n n 故 222222222111111111(1)122234(21)6812πππ∞∞∞===−=−+−+−=−=−⨯=−−∑∑∑nn n n n n n 『方法技巧』 本题考查收敛级数的性质——收敛级数的代数和仍收敛(此性质只适用于收敛级数).『特别提醒』 一些同学不熟悉符号∑,可以将其写成普通和的形式,看起来会方便一些.8. 解 由于函数xe 的幂级数展开式为 01()!∞==−∞<<+∞∑xnn e x x n ,而 2122000111()!!!∞∞∞+=====∑∑∑n n n n n n x x x x x n n n 因此 22120011()()!!∞∞+=====∑∑n n x n n S x x x x xe n n .『方法技巧』 本题考查指数函数()=x f x e 的幂级数展开式01()!∞==−∞<<+∞∑xnn e x x n 一般而言,若幂级数的系数为1!n 时,求和时可能与指数函数x e 有关;若幂级数的系数为1(21)!−n 或1(2)!n 时,求和时可能与三角函数sin x 或cos x 有关.三、解答题9. 解 判断条件收敛的运算过程是错误的.由于lim11→∞→∞===n n n n u ,因此由比较审敛法知,级数∞=n2∞=n n 不是绝对收敛的.错误在于:莱布尼茨定理是判断交错级数收敛的一个充分条件,不是必要的,因此并不能说明不满足莱布尼茨定理的第二个条件,级数就一定不收敛.本题的正确解法要用级数收敛的充分必要条件,即研究lim →∞n n S 是否存在.正确解法:212⎛=+++ ⎝n S n由于每个括号均为负数,因此2n S 单调递减,且有212⎛=+++⎝n S n12⎛>+++⎝n=> 因此2lim →∞n n S 存在,不妨设2lim →∞=n n S S ,而21221221lim lim()lim lim 0+++→∞→∞→∞→∞=+=+=+=+=n n n n n n n n n n S S u S u S S S从而得到lim →∞=n n S S ,即级数∞=n n .『方法技巧』 本题考查绝对收敛和条件收敛的概念、莱布尼茨定理的应用及级数收敛的充分必要条件.1∞=∑nn u收敛⇔部分和n S 的极限存在,即lim →∞=n n S S『特别提醒』 莱布尼茨定理是判断交错级数收敛的充分非必要条件,即使不满足莱布尼茨定理,级数也可能收敛.10. 解 由于级数的一般项中含有连乘的形式,所以用比值审敛法1111lim 0 111limlim0111 12→∞+++→∞→∞⎧⎪=>⎪⎪+⎪⎪==≤<⎨+⎪⎪=⎪⎪⎪⎩n n n n n n n nx x x u xx x u x x 故对任意的0≥x ,原级数均收敛.『方法技巧』 本题考查正项级数的比值审敛法.若正项级数的一般项中含有连乘(包括阶乘!n )时,一般考虑用比值审敛法判断级数的敛散性.『特别提醒』 由于x 的范围不同,1lim+→∞n n nu u 不同,故需要分别进行讨论,但不论什么情况,极限值均小于1,因此级数收敛.11. 解 考虑幂级数21(21)∞=+∑nn x n n由于2211(1)(23)limlim 1(21)+→∞→∞++==+n n n nu n n x x u n n ,故其收敛半径为1=R ,而当1=±x 时,级数11(21)∞=+∑n n n 均收敛,因此幂级数的收敛域为[1,1]−.令 22111()(1)(21)(21)+∞∞====<++∑∑n n n n x x S x x x n n n n则 2212112(),()21∞∞−=='''===−∑∑n n n n x xS x S x x n x 因此 22002()(0)()ln(1)1''''−===−−−⎰⎰xxxS x S S x dx dx x x又 (0)0'=S ,则 2()ln(1)'=−−S x x ,同理2201()(0)()ln(1)ln(1)2ln1+'−==−−=−−+−−⎰⎰xxxS x S S x dx x dx x x x x而 (0)0=S ,则 21()ln(1)2ln1+=−−+−−xS x x x x x,故1111)](21)22∞====+−+∑nn n n2ln 21)=++『方法技巧』 本题考查利用幂级数求常数项级数的和,这是一种常用方法,关键要做出合适的幂级数.本题由于级数一般项的分母中含有因式21+n ,故所做级数为21(21)∞=+∑n n x n n,此时只要令=x ,即为所求的常数项级数.『特别提醒』 在求幂级数的和时,不要忽略了收敛域的讨论,要保证常数项级数是幂级数取收敛域内的点.12. 解 2()ln(3)ln ln(3)=−=+−f x x x x x1ln[1(1)]ln[2(1)]ln[1(1)]ln 2ln[1()]2−=+−++−=+−+++xx x x 由于 234111ln(1)(1)(1)(11)234∞−−=+=−+−++−+=−−<≤∑nnn n n x x x x x x x x nn则 11111()(1)2()ln 2(1)(1)∞∞−−==−−=+−+−∑∑n nn n n n x x f x n n12111(1)(1)ln 2(1)(1)2∞∞−−==−−=+−+−∑∑n nn n nn n x x n n 111(1)ln 2[(1)]2∞−=−=+−−∑nn n n x n且满足1111112−<−≤⎧⎪⎨−−<≤⎪⎩x x,即 02<≤x . 『方法技巧』 本题考查形如()ln(1)=+f x x 的函数展开式及收敛域11−<≤x .首先将2()ln(3)=−f x x x 化为1()ln[1(1)]ln 2ln[1()]2−=+−+++xf x x ,将第一项中的1−x 看成标准形中的x ,第二项中的12−x看成标准形中的x ,再展开. 『特别提醒』 ()ln(1)=+f x x 的展开式可以用如下方法记忆:由于 231111111(1)(1)1∞−−−−==−+−++−+=−+∑n n n n n x x x xx x两边积分得11234011111(1)(1)ln(1)1234−−∞=−−+==−+−+++=+∑⎰n n xnnn x dx x x x x x x x n n13. 解 所求极限实际上是级数1212∞=−∑nn n 的和,因此可考虑幂级数 221(21)∞−=−∑n n n x令 22221222111()(21)()()1(1)∞∞−−==+''=−===−−∑∑n n n n x x S x n xxx x故2321113521112lim()31222222(1)2→∞+−++++===−n n n S 『方法技巧』 本题考查利用级数的和求其部分和的极限.关键是找到一个适当的幂级数,利用它求出常数项级数的和,再利用级数收敛的充要条件求极限.『特别提醒』 1212∞=−∑nn n 不刚好等于S ,而是相差12倍. 14. 解 当(,)∈−∞+∞x 时,3693()13!6!9!(3)!=++++++n x x x x y x n ,(0)1=y则 25831()2!5!8!(31)!−'=+++++−n x x x x y x n ,(0)0'=y4732()4!7!(32)!−''=+++++−n x x x y x x n ,故4732258314!7!(32)!2!5!8!(31)!−−'''++=+++++++++++−−n n x x x x x x x y y y x n n369313!6!9!(3)!+++++++n x x x x n2345612!3!4!5!6!!=++++++++++=n x x x x x x x x e n所以()y x 满足方程'''++=x y y y e .由于幂级数30(3)!∞=∑nn x n 的和函数为()y x ,因此所要求的是二阶常系数非齐次线性微分方程 '''++=x y y y e 的满足条件(0)1,(0)0'==y y 的特解()y x .其特征方程为210++=r r ,特征根为1,2122=−±r i ,对应的齐次方程的通解为212(cossin )22−=+x Y e C x C x ,又因1λ=不是特征根,则其特解形式为*=x y Ae ,代入原方程,解得13=A ,故微分方程的通解为11 2121(cos sin )223−=++x x y e C x C x e ,将(0)1,(0)0'==y y 代入得122,03==C C ,所求微分方程的特解为221cos 323−=+x x y e x e 因此32021cos (3)!323∞−==+∑x n x n x e x e n 『方法技巧』 本题考查幂级数逐项求导及二阶常系数非齐次线性微分方程的求通解和特解.。